已知函數(shù)y=x 
3
2
+x 
1
2
(x>0)的圖象上有一動(dòng)點(diǎn)P且在該點(diǎn)處的切線的傾斜角為θ,則θ的取值范圍是
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用,三角函數(shù)的圖像與性質(zhì)
分析:求出函數(shù)的導(dǎo)數(shù),運(yùn)用基本不等式可得切線的斜率k≥
3
,再由直線的斜率公式及傾斜角的范圍和正切函數(shù)的圖象和性質(zhì),即可得到所求范圍.
解答: 解:函數(shù)y=x 
3
2
+x 
1
2
(x>0)的導(dǎo)數(shù)為y′=
3
2
x
1
2
+
1
2
x-
1
2

≥2
3
2
x
1
2
1
2
x-
1
2
=
3
,
由在該點(diǎn)P處的切線的傾斜角為θ,
即有tanθ≥
3
,
由0≤θ<π,
即有
π
3
≤θ<
π
2

故答案為:[
π
3
π
2
).
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,正確求導(dǎo)和運(yùn)用正切函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知m∈R.復(fù)數(shù)z=lgm+(m2-1)i,當(dāng)m為何值時(shí)z為實(shí)數(shù),z為虛數(shù),z為純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=lnx-ax+
1-a
x
-1

(Ⅰ)當(dāng)a=1時(shí),求曲線f(x)在x=1處的切線方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)性;
(Ⅲ)當(dāng)a=
1
3
時(shí),設(shè)函數(shù)g(x)=x2-2bx-
5
12
,若對(duì)于?x1∈[0,1],對(duì)于?x1∈[1,2],?x2∈[0,1]使f(x1)≥g(x2)成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an},{bn}的通項(xiàng)公式分別為an=2n,bn=3n,若cn=a1bn+a2bn-1+a3bn-2+…+anb1,則數(shù)列{cn}的通項(xiàng)公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

O為平行四邊形ABCD所在平面上一點(diǎn),若3|
AB
|=2|
AD
|,
OA
+
OB
=λ(
OC
+
OD
),
OA
=μ(
AB
+2
AC
),則λ的值是( 。
A、-
1
3
B、-
1
2
C、-
2
3
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若4x+4y=1,則x+y的取值范圍是( 。
A、[0,1]
B、[-1,0]
C、[-1,+∞)
D、(-∞,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

P是拋物線y2=6x上的點(diǎn),若P到點(diǎn)(
3
2
,0)的距離為15,則P到直線2x+5=0的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在公差為d的等差數(shù)列{an}中,已知a1=10和2a2+2與5a3成等比數(shù)列.
(1)求d及an;
(2)若bn=|an|,數(shù)列{bn}的前n項(xiàng)和為Tn,求T15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,的4Sn=an2+2an-3,且a1、a2、a3、a4…a11成等比數(shù)列,當(dāng)n≥11時(shí),an>0.
(1)求證,當(dāng)a≥11時(shí),{an}為等差數(shù)列
(2)求:當(dāng)n>10時(shí),{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案