(本小題滿分12分)
已知函數(shù),且,。
(1)求函數(shù)的解析式;    (2)求函數(shù)上的值域。
(1)
(2)函數(shù)的上值域為。

試題分析:(1)由已知,………………3分
。………………6分
(2)令,則,………………8分
,………………9分
 ,………………11分
即函數(shù)的上值域為!12分
點評:典型題,復(fù)合指數(shù)函數(shù)問題。(2)小題中,利用換元法轉(zhuǎn)化得到二次函數(shù),利用二次函數(shù)圖象和性質(zhì)得到值域。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)函數(shù),若,則 的值等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分8分)已知函數(shù).
(1)求證:函數(shù)上為增函數(shù);
(2)當(dāng)函數(shù)為奇函數(shù)時,求的值;
(3)當(dāng)函數(shù)為奇函數(shù)時, 求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在經(jīng)濟(jì)學(xué)中,函數(shù)的邊際函數(shù)定義為.某公司每月最多生產(chǎn)100臺報警系統(tǒng)裝置,生產(chǎn)臺()的收入函數(shù)為(單位:元),其成本函數(shù)為(單位:元),利潤是收入與成本之差.
(1)求利潤函數(shù)及邊際利潤函數(shù)的解析式,并指出它們的定義域;
(2)利潤函數(shù)與邊際利潤函數(shù)是否具有相同的最大值?說明理由;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分13分)已知函數(shù),
(1)當(dāng)時,求函數(shù)的極值;
(2) 若在[-1,1]上單調(diào)遞減,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知上的減函數(shù),則滿足的實數(shù)的取值范圍是(   )
A.B.(0,1)C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠每天生產(chǎn)某種產(chǎn)品最多不超過40件,并且在生產(chǎn)過程中產(chǎn)品的正品率與每日生產(chǎn)產(chǎn)品件數(shù)()間的關(guān)系為,每生產(chǎn)一件正品盈利4000元,每出現(xiàn)一件次品虧損2000元.
(注:正品率=產(chǎn)品的正品件數(shù)÷產(chǎn)品總件數(shù)×100%)
(1)將日利潤(元)表示成日產(chǎn)量(件)的函數(shù);
(2)求該廠的日產(chǎn)量為多少件時,日利潤最大?并求出日利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知a>b,二次三項式ax2 +2x +b≥0對于一切實數(shù)x恒成立,又,使成立,則的最小值為(   )
A.1B.C.2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對于以下4個說法:①若函數(shù)上單調(diào)遞減,則實數(shù);②若函數(shù)是偶函數(shù),則實數(shù);③若函數(shù)在區(qū)間上有最大值9,最小值,則;④的圖象關(guān)于點對稱。其中正確的序號有            

查看答案和解析>>

同步練習(xí)冊答案