【題目】44:坐標(biāo)系與參數(shù)方程

已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

1)求直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;

2)直線與曲線在第一象限交于點,直線與直線交于點,求.

【答案】1)直線的極坐標(biāo)方程為,曲線的直角坐標(biāo)方程為;(23

【解析】

1)根據(jù)直線的參數(shù)方程,消去參數(shù),可直接得出普通方程,再由極坐標(biāo)與直角坐標(biāo)的互化公式,即可得出直線的極坐標(biāo)方程,以及曲線的直角坐標(biāo)方程;

2)先由題意,設(shè),由題意得到,,求出,,進而可由,得出結(jié)果.

1)由題意,直線的普通方程為,所以直線的極坐標(biāo)方程為

因為曲線的極坐標(biāo)方程為,所以,

所以,即曲線的直角坐標(biāo)方程為

2)依題意可設(shè)

所以 ,

直線化為極坐標(biāo)方程為

所以,即 ,

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角中,角AB,C所對邊分別為ab,c,已知

(1)求A ;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過點P(3,﹣4)作圓(x1)2+y22的切線,切點分別為A,B,則直線AB的方程為(  

A.x+2y20B.x2y10C.x2y20D.x+2y+20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),的導(dǎo)函數(shù).

(Ⅰ)當(dāng)時,求證;

(Ⅱ)是否存在正整數(shù),使得對一切恒成立?若存在,求出的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)期間,當(dāng)紅影視明星翟天臨“不知”“知網(wǎng)”學(xué)術(shù)不端事件在全國鬧得沸沸揚揚,引發(fā)了網(wǎng)友對亞洲最大電影學(xué)府北京電影學(xué)院乃至整個中國學(xué)術(shù)界高等教育亂象的反思.為進一步端正學(xué)風(fēng),打擊學(xué)術(shù)造假行為,教育部日前公布的2019年部門預(yù)算中透露,2019年教育部擬抽檢博士學(xué)位論文約篇,預(yù)算為萬元.國務(wù)院學(xué)位委員會、教育部2014年印發(fā)的《博士碩士學(xué)位論文抽檢辦法》通知中規(guī)定:每篇抽檢的學(xué)位論文送位同行專家進行評議,位專家中有位以上(含位)專家評議意見為“不合格”的學(xué)位論文,將認(rèn)定為“存在問題學(xué)位論文”;有且只有位專家評議意見為“不合格”的學(xué)位論文,將再送位同行專家進行復(fù)評. 位復(fù)評專家中有位以上(含位)專家評議意見為“不合格”的學(xué)位論文,將認(rèn)定為“存在問題學(xué)位論文”設(shè)每篇學(xué)位論文被每位專家評議為“不合格”的概率均為且各篇學(xué)位論文是否被評議為“不合格”相互獨立.

(1)相關(guān)部門隨機地抽查了位博士碩士的論文,每人一篇,抽檢是否合格,抽檢得到的部分?jǐn)?shù)據(jù)如下表所示:

合格

不合格

博士學(xué)位論文

碩士學(xué)位論文

通過計算說明是否有的把握認(rèn)為論文是否合格與作者的學(xué)位高低有關(guān)系?

(2)若,記一篇抽檢的學(xué)位論文被認(rèn)定為“存在問題學(xué)位論文”的概率為,求的值;

(3)若擬定每篇抽檢論文不需要復(fù)評的評審費用為元,需要復(fù)評的評審費用為元;除評審費外,其他費用總計為萬元現(xiàn)以此方案實施,且抽檢論文為篇,問是否會超過預(yù)算?并說明理由.

臨界值表:

參考公式,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,F1(﹣2,0),F22,0)是橢圓C的兩個焦點,M是橢圓C上的一點,當(dāng)MF1F1F2時,有|MF2|3|MF1|

1)求橢圓C的標(biāo)準(zhǔn)方程;

2)過點P0,3)作直線l與軌跡C交于不同兩點A,B,使△OAB的面積為(其中O為坐標(biāo)原點),問同樣的直線l共有幾條?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)(其中):①若函數(shù)的一個對稱中心到與它最近一條對稱軸的距離為,則;②若函數(shù)上單調(diào)遞增,則的范圍為;③若,則在點處的切線方程為 ;④若,,則的最小值為;⑤若,則函數(shù)的圖象向右平移個單位可以得到函數(shù)的圖象.其中正確命題的序號有_______.(把你認(rèn)為正確的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù)在平面直角坐標(biāo)系中,已知點直線曲線軸交于點A交于點分別是曲線與線段AB上的動點.

(1)用表示點B到點F的距離;

(2)若的值;

(3)設(shè)且存在點P、Q,使得是等邊三角形,求的邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中,,,且的最小值為-2,的圖象的相鄰兩條對稱軸之間的距離為,的圖象過點.

1)求函數(shù)的解析式和單調(diào)遞增區(qū)間;

2)若函數(shù)的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案