已知函數(shù).
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),在函數(shù)圖象上取不同兩點(diǎn)A、B,設(shè)線(xiàn)段AB的中點(diǎn)為,試探究函數(shù)在Q點(diǎn)處的切線(xiàn)與直線(xiàn)AB的位置關(guān)系?
(3)試判斷當(dāng)時(shí)圖象是否存在不同的兩點(diǎn)A、B具有(2)問(wèn)中所得出的結(jié)論.
(1)函數(shù)在定義域上單調(diào)遞增;(2)函數(shù)在Q點(diǎn)處的切線(xiàn)與直線(xiàn)AB平行;
(3)圖象不存在不同的兩點(diǎn)A、B具有(2)問(wèn)中所得出的結(jié)論.
解析試題分析:(1)求導(dǎo)即可知其單調(diào)性;(2)利用導(dǎo)數(shù)求出函數(shù)在點(diǎn)Q處的切線(xiàn)的斜率,再求出直線(xiàn)AB的斜率,可看出它們是相等的,所以函數(shù)在Q點(diǎn)處的切線(xiàn)與直線(xiàn)AB平行;
(3)設(shè),若滿(mǎn)足(2)中結(jié)論,則有
,化簡(jiǎn)得(*).如果這個(gè)等式能夠成立,則存在,如果這個(gè)等式不能成立,則不存在.設(shè),則*式整理得,問(wèn)題轉(zhuǎn)化成該方程在上是否有解.再設(shè)函數(shù),下面通過(guò)導(dǎo)數(shù)即可知方程在上是否有解,從而可確定函數(shù)是否滿(mǎn)足(2)中結(jié)論.
(1)由題知,
因?yàn)?img src="http://thumb.1010pic.com/pic5/tikupic/3b/7/pbajg1.png" style="vertical-align:middle;" />時(shí),,函數(shù)在定義域上單調(diào)遞增; 4分
(2),,
所以函數(shù)Q點(diǎn)處的切線(xiàn)與直線(xiàn)AB平行; .7分
(3)設(shè),若滿(mǎn)足(2)中結(jié)論,有
,即
即 (*) .9分
設(shè),則*式整理得,問(wèn)題轉(zhuǎn)化成該方程在上是否有解; 11分
設(shè)函數(shù),則,所以函數(shù)在單調(diào)遞增,即,即方程在上無(wú)解,即函數(shù)不滿(mǎn)足(2)中結(jié)論. 14分
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
為圓周率,為自然對(duì)數(shù)的底數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求,,,,,這6個(gè)數(shù)中的最大數(shù)與最小數(shù);
(3)將,,,,,這6個(gè)數(shù)按從小到大的順序排列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ax2-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e]上的最小值為-2,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知
(1)求函數(shù)的單調(diào)區(qū)間;
(2)求函數(shù)在 上的最小值;
(3)對(duì)一切的,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知).
(1)若時(shí),求函數(shù)在點(diǎn)處的切線(xiàn)方程;
(2)若函數(shù)在上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對(duì)數(shù)的底)時(shí),函數(shù)的最小值是.若存在,求出的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求在點(diǎn)處的切線(xiàn)方程;
(2)證明:曲線(xiàn)與曲線(xiàn)有唯一公共點(diǎn);
(3)設(shè),比較與的大小, 并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(12分)(2011•重慶)設(shè)f(x)=2x3+ax2+bx+1的導(dǎo)數(shù)為f′(x),若函數(shù)y=f′(x)的圖象關(guān)于直線(xiàn)x=﹣對(duì)稱(chēng),且f′(1)=0
(Ⅰ)求實(shí)數(shù)a,b的值
(Ⅱ)求函數(shù)f(x)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最大值和最小值;
(2)若在上為增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com