4.若x,y∈R,則“x>y”是“x2>y2”的既不充分也不必要條件.(從“充要、充分不必要不充分、必要不充分、既不充分也不必要”四種關(guān)系中選擇一個填在橫線上)

分析 根據(jù)充分條件和必要條件的定義進行判斷即可.

解答 解:當x=1,y=-2時,滿足x>y,但x2>y2不成立,即充分性不成立,
當x=-2,y=1時,滿足x2>y2,但x>y不成立,即必要性不成立,
綜上“x>y”是“x2>y2”的 既不充分也不必要條件,
故答案為:既不充分也不必要

點評 本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的關(guān)系結(jié)合充分條件和必要條件的定義是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

14.二項式(1-3x)5的展開式中x3的系數(shù)為-270(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.如圖,一個長為5、寬為3的矩形被平行于邊的兩條直線所分割,其中矩形的左上角是一個是一個邊長為x的正方形
(1)若圖中陰影部分的面積為S,試寫出S關(guān)于x的函數(shù)解析式,并標明自變量x的取值范圍;
(2)若(1)中的函數(shù)解析式為S(x),求出S(x)的最小值,并指明S(x)取得最小值時對應的自變量x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x≤0}\\{f(x-1)-f(x-2),x>0}\end{array}\right.$,則f(3)的值等于-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=x2-2ax+a(a為實常數(shù)).設$h(x)=\frac{f(x)}{x}$,證明:當a<1時,h(x)在[1,+∞)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.下面的函數(shù)中,周期為π的奇函數(shù)是( 。
A.y=tan2xB.y=cos2xC.y=sin2xD.$y=sin\frac{x}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.直線x+y-2=0和x-y-4=0的交點為( 。
A.(3,-1)B.(-3,-1)C.(-3,1)D.(3,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知過點M(-2,1)的直線l與x,y軸正半軸分別交與A、B兩點,且S△ABO=$\frac{1}{2}$,求直線l的方程.(結(jié)果用直線的一般方程表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點P1(a1,b1),P(a2,b2),…Pn(an,bn)(n∈N*)在函數(shù)y=log${\;}_{\frac{1}{2}}$x的圖象上.
(1)若數(shù)列{bn}是等差數(shù)列,求證:數(shù)列{an}是等比數(shù)列;
(2)若數(shù)列{an}的前n項和Sn=1-2-n,過點Pn,Pn+1的直線與兩坐標軸所圍圖形的面積為cn,求最小的實數(shù)t,使得對任意的n∈N*,cn≤t恒成立.

查看答案和解析>>

同步練習冊答案