已知等比數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且S1,2S2,3S3成等差數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)bn=an+n,求數(shù)列{bn}前n項(xiàng)和Tn
【答案】分析:(1)設(shè)出等比數(shù)列{an}的公比為q,若q為1,由首項(xiàng)a1,利用等比數(shù)列的求和公式分別表示出S1,2S2,3S3,得到S1,2S2,3S3不成等差數(shù)列,矛盾,故q不為1,利用等比數(shù)列的求和公式分別表示出S1,2S2,3S3,根據(jù)S1,2S2,3S3成等差數(shù)列,利用等差數(shù)列的性質(zhì)列出關(guān)于q的方程,求出方程的解得到q的值,首項(xiàng)a1及q的值,利用等比數(shù)列的通項(xiàng)公式即可得到數(shù)列{an}通項(xiàng)公式;
(2)將第一問得出的數(shù)列{an}通項(xiàng)公式代入bn=an+n中,得到數(shù)列{bn}的通項(xiàng)公式,列舉出數(shù)列{bn}前n項(xiàng)和Tn的每一項(xiàng),結(jié)合后根據(jù)數(shù)列{an}的前n項(xiàng)和Sn以及等差數(shù)列的求和公式進(jìn)行變形,即可表示出數(shù)列{bn}前n項(xiàng)和Tn
解答:解:(1)設(shè)數(shù)列{an}的公比為q,…(1分)
若q=1,則S1=a1=1,2S2=4a1=4,3S3=9a1=9,故S1+3S3=10≠2×2S2,與已知矛盾,故q≠1,…(2分)
∴Sn==,…(4分)
由S1,2S2,3S3成等差數(shù)列,得S1+3S3=2×2S2,
即1+3×=4×
解得:q=,…(5分)
則an=a1•qn-1=(n-1;…(6分)
(2)由(1)得,bn=an+n=(n-1+n,…(7分)
所以Tn=(a1+1)+(a2+2)+…+(an+n)
=Sn+(1+2+…+n)=+…(10分)
=+=.…(12分)
點(diǎn)評:此題考查了等差數(shù)列的性質(zhì),等差數(shù)列的前n項(xiàng)和公式,等比數(shù)列的通項(xiàng)公式,以及等比數(shù)列的前n項(xiàng)和公式,熟練掌握公式及性質(zhì)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、已知等比數(shù)列{an}的前n項(xiàng)和為Sn,公比q≠1,若S5=3a4+1,S4=2a3+1,則q等于(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a2=9,a5=243.
(1)求{an}的通項(xiàng)公式;
(2)令bn=log3an,求數(shù)列{
1bnbn+1
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足a1•a7=3a3a4,則數(shù)列{an}的公比q=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中a1=64,公比q≠1,且a2,a3,a4分別為某等差數(shù)列的第5項(xiàng),第3項(xiàng),第2項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log2an,求數(shù)列{|bn|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}中,a3+a6=36,a4+a7=18.若an=
12
,則n=
9
9

查看答案和解析>>

同步練習(xí)冊答案