(本題滿分為12分)

在四棱錐中,底面,,,,,的中點(diǎn).

(I)證明:

(II)證明:平面;

(III)求二面角的余弦值.

 

【答案】

(I)關(guān)鍵證明,(II)平面.(III)

【解析】

試題分析:(I)證明:底面,.又

,.                                                (3分)

(II)證明:,是等邊三角形,,又 的中點(diǎn),,又由(1)可知,

底面,

平面.                                                           (6分)

(III)解:由題可知兩兩垂直,

如圖建立空間直角坐標(biāo)系,

設(shè),則

.

設(shè)面的一個(gè)法向量為

 

 取,即

(9分)

設(shè)面的一個(gè)法向量為

 

 取

由圖可知二面角的余弦值為.             (12分)

考點(diǎn):直線與平面垂直的判定定理;二面角的平面角

點(diǎn)評(píng):在立體幾何中,證明直線與直線垂直、直線與平面垂直常用到直線與平面垂直的判定定理。另外,假如幾何體是規(guī)則的圖形,還是建立空間直角坐標(biāo)系,用向量去解決問題較方便。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆遼寧省錦州市高一12月月考數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分為12分)

如圖所示:已知⊙O所在的平面,AB是⊙O的直徑,C是⊙O上任意一點(diǎn),過(guò)A作于E,求證:

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)十二理數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿分為12分)

已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線的斜率是

(1)求實(shí)數(shù)的值;

(2)求在區(qū)間上的最大值;

(3)對(duì)任意給定的正實(shí)數(shù),曲線上是否存在兩點(diǎn),使得是以為直角頂點(diǎn)的直角三角形,且此三角形斜邊的中點(diǎn)在軸上?請(qǐng)說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年遼寧沈陽(yáng)二中等重點(diǎn)中學(xué)協(xié)作體高三領(lǐng)航高考預(yù)測(cè)十二理數(shù)學(xué)卷(解析版) 題型:解答題

(本題滿分為12分)

已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(I)求橢圓方程;

(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第一次檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分為12分)

  已知函數(shù)的圖像過(guò)坐標(biāo)原點(diǎn),且在點(diǎn)處的切線

的斜率是

(1)求實(shí)數(shù)的值;    (2)求在區(qū)間上的最大值;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省高三上學(xué)期第一次檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分為12分)已知橢圓中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為4,離心率為

(I)求橢圓方程;

(II)設(shè)橢圓在y軸的正半軸上的焦點(diǎn)為M,又點(diǎn)A和點(diǎn)B在橢圓上,且M分有向線段所成的比為2,求線段AB所在直線的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案