1.已知{an}是等比數(shù)列,a2=2,a4=8,則a6=(  )
A.4B.16C.32D.64

分析 由等比數(shù)列的性質(zhì)可得:${a}_{6}=\frac{{a}_{4}^{2}}{{a}_{2}}$.

解答 解:由等比數(shù)列的性質(zhì)可得:${a}_{6}=\frac{{a}_{4}^{2}}{{a}_{2}}$=$\frac{{8}^{2}}{2}$=32.
故選:C.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若x>0,y>0且$\frac{1}{x}$+$\frac{4}{y}$=1,則x+y的最小值為( 。
A.4B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知命題p:函數(shù)y=log2($\sqrt{{x}^{2}+1}$-x)是奇函數(shù);命題q:?x0∈(0,+∞),2${\;}^{{x}_{0}}$=$\frac{1}{2}$,則下列判斷正確的是(  )
A.p是假命題B.q是真命題C.p∧(¬q)是真命題D.(¬p)∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.P是雙曲線$\frac{x^2}{9}-\frac{y^2}{16}=1$的右支上一點(diǎn),M,N分別是圓x2+y2+10x+21=0和x2+y2-10x+24=0上的點(diǎn),則|PM|-|PN|的最大值為(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.書(shū)架上有4本不同的語(yǔ)文書(shū),2本不同的數(shù)學(xué)書(shū),從中任意取出2本,能取出數(shù)學(xué)書(shū)的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知球的直徑SC=4,AB是該球球面上兩點(diǎn),AB=2,∠ASC=∠BSC=30°,則棱錐S-ABC的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={-1,1,2},集合B={x|x-1>0},集合A∩B為(  )
A.ϕB.{1,2}C.{-1,1,2}D.{2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)={e^x}-\frac{1}{2}a{x^2}+(a-e)x$(x≥0)(e=2.71828…為自然對(duì)數(shù)的底數(shù))
(1)當(dāng)a=0時(shí),求f(x)的最小值;
(2)當(dāng)1<a<e時(shí),求f(x)單調(diào)區(qū)間的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率$e=\frac{1}{2}$,且過(guò)點(diǎn)Q$(1,\;\frac{3}{2})$
(1)求橢圓C的方程.
(2)橢圓C長(zhǎng)軸兩端點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的動(dòng)點(diǎn),定直線x=4與直線PA,PB分別交于M,N兩點(diǎn),直線PA,PB的斜率分別為k1,k2
①證明${k_1}{k_2}=-\frac{3}{4}$;
②若E(7,0),過(guò)E,M,N三點(diǎn)的圓是否過(guò)x軸上不同于點(diǎn)E的定點(diǎn)?若經(jīng)過(guò),求出定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案