【題目】湖北省第二屆(荊州)園林博覽會于2019928日至1128日在荊州園博園舉辦,本屆園林博覽會以“輝煌荊楚,生態(tài)園博”為主題,展示荊州生態(tài)之美,文化之韻,吸引更多優(yōu)秀企業(yè)來荊投資,從而促進荊州經(jīng)濟快速發(fā)展.在此次博覽會期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放荊州市場.已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一臺需另投入80元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備萬臺且全部售完,每萬臺的銷售收入(萬元)與年產(chǎn)量(萬臺)滿足如下關(guān)系式:.

(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(萬臺)的函數(shù)解析式;(利潤=銷售收入-成本)

(2)當年產(chǎn)量為多少萬臺時,該公司獲得的年利潤最大?并求最大利潤.

【答案】12)當年產(chǎn)量為29萬臺時,該公司獲得的利潤最大為1360萬元

【解析】

(1)先閱讀題意,再建立起年利潤關(guān)于年產(chǎn)量的函數(shù)解析式即可;

(2)利用配方法求二次函數(shù)的最值可得當,即,再利用重要不等式可得當,再比較兩段上的最大值即可得解.

解:(1).

(2)當

.

,

當且僅當時等號成立,∴.

,

∴當年產(chǎn)量為29萬臺時,該公司獲得的利潤最大為1360萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上是增函數(shù),,對于命題“若,則”,有下列結(jié)論:

①此命題的逆命題為真命題;

②此命題的否命題為真命題;

③此命題的逆否命題為真命題;

④此命題的逆命題和否命題有且只有一個為真命題.

其中正確的結(jié)論的序號為______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)參加詩詞大會,設(shè)甲、乙兩人每道題答對的概率分別為.假定甲、乙兩位同學(xué)答題情況互不影響,且每人各次答題情況相互獨立.

(1)用表示甲同學(xué)連續(xù)三次答題中答對的次數(shù),求隨機變量的分布列和數(shù)學(xué)期望;

(2)設(shè)為事件“甲、乙兩人分別連續(xù)答題三次,甲同學(xué)答對的次數(shù)比乙同學(xué)答對的次數(shù)恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,平面,,底面是梯形,,.

1)求證:平面平面;

2)設(shè)為棱上一點,,直線與面所成角為,試確定的值使得.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國多地區(qū)遭遇了霧霾天氣,引起口罩熱銷.某品牌口罩原來每只成本為6元.售價為8元,月銷售5萬只.

1)據(jù)市場調(diào)查,若售價每提高0.5元,月銷售量將相應(yīng)減少0.2萬只,要使月總利潤不低于原來的月總利潤(月總利潤月銷售總收入月總成本),該口罩每只售價最多為多少元?

2)為提高月總利潤,廠家決定下月進行營銷策略改革,計劃每只售價元,并投入萬元作為營銷策略改革費用.據(jù)市場調(diào)查,每只售價每提高0.5元,月銷售量將相應(yīng)減少萬只.則當每只售價為多少時,下月的月總利潤最大?并求出下月最大總利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.為曲線上的動點,點在射線上,且滿足.

(Ⅰ)求點的軌跡的直角坐標方程;

(Ⅱ)設(shè)軸交于點,過點且傾斜角為的直線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對關(guān)于的方程有近似解,必修一課本里研究過‘二分法’.現(xiàn)在結(jié)合導(dǎo)函數(shù),介紹另一種方法‘牛頓切線法’.對曲線,估計零點的值在附近,然后持續(xù)實施如下‘牛頓切線法’的步驟:

處作曲線的切線,交軸于點

處作曲線的切線,交軸于點

處作曲線的切線,交軸于點;

得到一個數(shù)列,它的各項就是方程的近似解,按照數(shù)列的順序越來越精確.請回答下列問題:

1)求的值;

2)設(shè),求的解析式(用表示);

3)求該方程的近似解的這兩種方法,‘牛頓切線法’和‘二分法’,哪一種更快?請給出你的判斷和依據(jù).(參照值:關(guān)于的方程有解

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平行六面體中,以頂點為端點的三條棱長都為1,且兩兩夾角為.

(1)求的長;

(2)求異面直線夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是拋物線的焦點,是拋物線上一點,且.

1)求拋物線的標準方程;

2)過點的動直線交拋物線于兩點,拋物線上是否存在一個定點,使得以弦為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案