【題目】若對(duì)圓上任意一點(diǎn)
,
的取值與
,
無(wú)關(guān),則實(shí)數(shù)
的取值范圍是________.
【答案】
【解析】
由題意可得故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作點(diǎn)P到直線m:3x﹣4y+a=0與直線l:3x﹣4y﹣9=0距離之和的5倍,進(jìn)一步分析說(shuō)明圓位于兩直線內(nèi)部,再由點(diǎn)到直線的距離公式求解直線3x﹣4y+a=0與圓相切時(shí)的a值,則答案可求.
設(shè)z=|3x﹣4y+a|+|3x﹣4y﹣9|=5(),
故|3x﹣4y+a|+|3x﹣4y﹣9|可以看作點(diǎn)P(x,y)到直線m:3x﹣4y+a=0與直線l:3x﹣4y﹣9=0距離之和的5倍,
∵|3x﹣4y+a|+|3x﹣4y﹣9|的取值與x,y無(wú)關(guān),
∴這個(gè)距離之和與點(diǎn)P在圓上的位置無(wú)關(guān),
如圖所示:可知直線m平移時(shí),P點(diǎn)與直線m,l的距離之和均為m,l的距離,
即此時(shí)圓在兩直線內(nèi)部,
當(dāng)直線m與圓相切時(shí),,
化簡(jiǎn)得|a﹣1|=5,
解得a=6或a=﹣4(舍去),
∴a≥6.
故答案為:a≥6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將參加數(shù)學(xué)競(jìng)賽的500名同學(xué)編號(hào)為001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個(gè)容量為50的樣本,且隨機(jī)抽到的號(hào)碼為005,這500名學(xué)生分別在三個(gè)考點(diǎn)考試,從001到200在第一考點(diǎn),從201到365在第二考點(diǎn),從366到500在第三考點(diǎn),則第二考點(diǎn)被抽中的人數(shù)為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
11分制乒乓球比賽,每贏一球得1分,當(dāng)某局打成10:10平后,每球交換發(fā)球權(quán),先多得2分的一方獲勝,該局比賽結(jié)束.甲、乙兩位同學(xué)進(jìn)行單打比賽,假設(shè)甲發(fā)球時(shí)甲得分的概率為0.5,乙發(fā)球時(shí)甲得分的概率為0.4,各球的結(jié)果相互獨(dú)立.在某局雙方10:10平后,甲先發(fā)球,兩人又打了X個(gè)球該局比賽結(jié)束.
(1)求P(X=2);
(2)求事件“X=4且甲獲勝”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè) 的內(nèi)角
的對(duì)邊分別為
已知
.
(1)求角 ;
(2)若 ,
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,四邊形是等腰梯形
,
,
.在梯形
中,
,且
,
,
平面
.
(Ⅰ)求證:.
(II)求四棱錐與三棱錐
體積的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分12分)
已知拋物線C的方程C:y2="2" p x(p>0)過(guò)點(diǎn)A(1,-2).
(I)求拋物線C的方程,并求其準(zhǔn)線方程;
(II)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前n項(xiàng)和為
,并且
,數(shù)列
滿足:
,
,記數(shù)列
的前n項(xiàng)和為
.
(1)求數(shù)列的通項(xiàng)公式
及前n項(xiàng)和為
;
(2)求數(shù)列的通項(xiàng)公式
及前n項(xiàng)和為
;
(3)求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】p:方程x2+2mx+1=0有兩個(gè)不相等的正根,q:不等式m2﹣m﹣6<0成立;求使p∨q為真,p∧q為假時(shí),實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BC,AC的中點(diǎn),AB=BC.
求證:(1)A1B1∥平面DEC1;
(2)BE⊥C1E.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com