已知
a
=(4,3),
b
=(-1,2)
(1)求 
a
b
的角的余弦;
(2)若(
a
b
)⊥(2
a
+
b
),求λ;
(3)若(
a
b
)∥(2
a
+
b
),求λ.
考點:數(shù)量積判斷兩個平面向量的垂直關系,平行向量與共線向量,數(shù)量積表示兩個向量的夾角
專題:平面向量及應用
分析:(1)由向量
a
b
,求出它們所成的角的余弦值;
(2)求出向量
a
b
,2
a
+
b
的坐標表示,由(
a
b
)⊥(2
a
+
b
),得(
a
b
)•(2
a
+
b
)=0,求出λ的值;
(3)由(
a
b
)∥(2
a
+
b
),得8(4+λ)-7(3-2λ)=0,求出λ的值.
解答: 解:(1)∵
a
=(4,3),
b
=(-1,2),
a
b
所成的角的余弦為
cosθ=
a
b
|
a
|×|
b
|
=
4×(-1)+3×2
42+32
×
(-1)2+22
=
2
5
25
;
(2)∵
a
b
=(4+λ,3-2λ),
2
a
+
b
=(7,8),
且(
a
b
)⊥(2
a
+
b
),
∴(
a
b
)•(2
a
+
b
)=7(4+λ)+8(3-2λ)=0,
解得λ=
52
9

(3)∵(
a
b
)∥(2
a
+
b
),
∴8(4+λ)-7(3-2λ)=0,
解得λ=-
1
2
點評:本題考查了平面向量的應用問題,利用平面向量求夾角,判定平行與垂直,是常見的問題,是基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個盒子中裝有標號為1,2,3,4的4張標簽,隨機地選取兩張標簽,根據(jù)下列條件求兩張標簽上的數(shù)字為相鄰整數(shù)的概率:
(1)標簽的選取是無放回的;
(2)標簽的選取是有放回的.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列:
1
1
,
2
1
,
1
2
,
3
1
,
2
2
1
3
,
4
1
,
3
2
,
2
3
1
4
,…,依它的前10項的規(guī)律,這個數(shù)列的第2014項a2014=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(ωx),其中常數(shù)ω>0.
(1)令ω=
1
2
,求函數(shù)F(x)=f(x)+f(x+π)的單調(diào)區(qū)間;
(2)令ω=2,將函數(shù)y=f(x)的圖象向左平移
π
6
個單位,再往上平移1個單位,得到函數(shù)y=g(x)的圖象.對任意的a∈R,求y=g(x)在區(qū)間[a,a+10π]上零點個數(shù)的所有可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀下面材料:根據(jù)兩角和與差的正弦公式,有
sin(α+β)=sinαcosβ+cosαsinβ           …①
sin(α-β)=sinαcosβ-cosαsinβ          …②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  …③
令α+β=A,α-β=B 有α=
A+B
2
,β=
A-B
2

代入③得sinA+sinB=2sin
A+B
2
cos
A-B
2

(1)利用上述結(jié)論,試求sin15°+sin75°的值.
(2)類比上述推證方法,根據(jù)兩角和與差的余弦公式,證明:cosA+cosB=2cos
A+B
2
•cos
A-B
2

(3)求函數(shù)y=cos2x•cos(2x+
π
6
)x∈[0,
π
4
]的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E為DD1的中點,試判斷BD1與平面AEC的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(Ⅰ)若函數(shù)f(x)在[-1,2m]上不具有單調(diào)性,求實數(shù)m的取值范圍;
(Ⅱ)若f(1)=g(1).
  (ⅰ)求實數(shù)a的值;
  (ⅱ)設t1=
1
2
f(x)
,t2=g(x),t3=2x,當x∈(0,1)時,試比較t1,t2,t3的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a、b∈R+,求證:(a+b)(a3+b3)≥(a2+b22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知1+i是方程x2+bx+c=0的一個根(b、c為實數(shù)).
(1)求b,c的值;
(2)試說明1-i也是方程的根嗎?

查看答案和解析>>

同步練習冊答案