方程cos在區(qū)間(0,100π)內(nèi)解的個數(shù)是

[  ]

A.98

B.100

C.102

D.200

答案:B
解析:

  解:分析解的個數(shù)問題,一般用圖象法,原方程y=()x-sinx=()x,在同一坐標(biāo)系中作出函數(shù)y=-sinx和y=()x的圖象,在作圖時,要判斷兩曲線在(0,100π)內(nèi)交點個數(shù),應(yīng)先在一個周期內(nèi)研究其交點個數(shù),為2個,因此所求交點個數(shù)為2×=100(個)(如圖).

  ∴應(yīng)選B.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,cosωx),
n
=(sinωx,
3
)
(ω>0),函數(shù)f(x)=
m
n
,且f(x)圖象上一個最高點為P(
π
12
,2)
,與P最近的一個最低點的坐標(biāo)為(
12
,-2)

(1)求函數(shù)f(x)的解析式;
(2)設(shè)a為常數(shù),判斷方程f(x)=a在區(qū)間[0,
π
2
]
上的解的個數(shù);
(3)在銳角△ABC中,若cos(
π
3
-B)=1
,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(2x-
π
3
)+2sin(x-
π
4
)sin(x+
π
4
)

(Ⅰ)求函數(shù)f(x)的最小正周期和圖象的對稱軸方程;
(Ⅱ)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)=cos(ωx+φ)(ω>0,且-π≤φ≤0)的定義域為R,其圖象C關(guān)于直線x=
π
4
對稱,又f(x)在區(qū)間[0,
π
6
]上是單調(diào)函數(shù).
(1)求函數(shù)f(x)的表達式;
(2)將圖象C向右平移
π
4
個單位后,得到函數(shù)y=g(x)的圖象.
①化簡,并求值:
1+f(20°)+g(20°)
1+f(20°)-g(20°)
+4f(10°);
②若關(guān)于x的方程f(x)=g(x)+m在區(qū)間[0,
π
6
]上有唯一實根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2cos2
ωx
2
+cos(ωx+
π
3
)
(ω>0)的最小正周期為π.
(1)求實數(shù)ω的值,并求使得關(guān)于x的方程f(x)=m在區(qū)間[0,
3
]
上有解的實數(shù)m的取值范圍;
(2)在銳角△ABC中,a,b,c分別是角A,B,C的對邊,若f(A)=-
1
2
,c=3
,△ABC的面積為3
3
,求角A的值和邊a的值.

查看答案和解析>>

同步練習(xí)冊答案