6.在等比數(shù)列{an}中,已知a1=3,公比q=2,則a2和a8的等比中項(xiàng)為(  )
A.48B.±48C.96D.±96

分析 先求出a2和a8,由此能求出a2和a8的等比中項(xiàng).

解答 解:∵在等比數(shù)列{an}中,a1=3,公比q=2,
∴a2=3×2=6,
${a}_{8}=3×{2}^{7}$=384,
∴a2和a8的等比中項(xiàng)為$±\sqrt{6×384}$=±48.
故選:B.

點(diǎn)評(píng) 本題考查等比中項(xiàng)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知圓心為(1,2)的圓C與直線l:3x-4y-5=0相切.
(1)求圓C的方程;
(2)求過點(diǎn)P(3,5)與圓C相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=2x2-4x+a,g(x)=logax(a>0且a≠1).
(1)若函數(shù)f(x)在[-1,3m]上不具有單調(diào)性,求實(shí)數(shù)m的取值范圍;
(2)若f(1)=g(1)
①求實(shí)數(shù)a的值;
②設(shè)t1=$\frac{1}{2}$f(x),t2=g(x),t3=2x,當(dāng)x∈(0,1)時(shí),試比較t1,t2,t3的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{an}的首項(xiàng)和公差都為2,且a1、a8分別為等比數(shù)列{bn}的第一、第四項(xiàng).
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{4}{{({{log}_2}{b_{n+1}}){a_n}}}$,求{cn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若a<b<0,則( 。
A.0<$\frac{a}$<1B.ab<b2C.$\frac{1}$>$\frac{1}{a}$D.$\frac{a}$<$\frac{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.如圖,一船以每小時(shí)20km的速度向東航行,船在A處看到一個(gè)燈塔B在北偏東60°方向,行駛4小時(shí)后,船到達(dá)C處,看到這個(gè)燈塔在北偏東15°方向,這時(shí)船與燈塔間的距離為$40\sqrt{2}$km.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合A={x|x2<1},B=x|2x>$\sqrt{2}\}$,則A∩B=(  )
A.$(-\frac{1}{2},\frac{1}{2})$B.$(0,\frac{1}{2})$C.$(\frac{1}{2},1)$D.$(-\frac{1}{2},1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若$\frac{a-c}=\frac{a-b}{a+c}$,則角C等于( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若g(x)=ln(ex-1)-lnx,當(dāng)x∈(0,+∞)時(shí),不等式f(g(x))<f(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案