精英家教網 > 高中數學 > 題目詳情
已知復數z=x+yi(x,y∈R)在復平面上對應的點為M.
(Ⅰ)設集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數作為x,從集合Q中隨機取一個
數作為y,求復數z為純虛數的概率;
(Ⅱ)設x∈[0,3],y∈[0,4],求點M落在不等式組:所表示的平面區(qū)域內的概率.
【答案】分析:(Ⅰ)每種情況出現的可能性相等,是一個古典概型列舉出試驗發(fā)生包含的所有事件是組成復數z的所有情況共有12個,其中事件A包含的基本事件共2個:i,2i.根據古典概型公式得到結果.
(2)由題意知本題是一個幾何概型,試驗發(fā)生包含的所有事件是在平面區(qū)域內,做出面積,滿足條件的事件是三角形OAD的區(qū)域,做出面積,根據幾何概型公式得到結果.
解答:解:(Ⅰ)每種情況出現的可能性相等,是一個古典概型
記“復數z為純虛數”為事件A
∵列舉出組成復數z的所有情況共有12個:-4,-4+i,-4+2i,-3,-3+i,-3+2i,
-2,-2+i,-2+2i,0,i,2i,
其中事件A包含的基本事件共2個:i,2i.
∴所求事件的概率為
(Ⅱ)依條件可知,點M均勻地分布在平面區(qū)域內,
該平面區(qū)域的圖形為圖中矩形OABC圍成的區(qū)域,面積為S=3×4=12.
所求事件構成的平面區(qū)域為,
其圖形如下圖中的三角形OAD(陰影部分)
又直線x+2y-3=0與x軸、y軸的交點分別為,
∴三角形OAD的面積為
∴所求事件的概率為
點評:古典概型和幾何概型是我們學習的兩大概型,古典概型要求能夠列舉出所有事件和發(fā)生事件的個數,而不能列舉的就是幾何概型,幾何概型的概率的值是通過長度、面積、和體積、的比值得到.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知復數z=x+yi(x,y∈R)在復平面上對應的點為M.
(Ⅰ)設集合P={-4,-3,-2,0},Q={0,1,2},從集合P中隨機取一個數作為x,從集合Q中隨機取一個
數作為y,求復數z為純虛數的概率;
(Ⅱ)設x∈[0,3],y∈[0,4],求點M落在不等式組:
x+2y-3≤0
x≥0
y≥0
所表示的平面區(qū)域內的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=x+yi,且|z-2|=
3
,則
y
x
的最大值
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=x+yi(x,y∈R),且|z-2|=1,則
yx
的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=x+yi(x,y∈R,i為虛數單位),且z2=8i,則z=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知復數z=x+yi(x,y∈R,x≠0)且|z-2|=
3
,則
y
x
的范圍為
[-
3
,
3
]
[-
3
,
3
]

查看答案和解析>>

同步練習冊答案