平面內(nèi),n(n∈N*)條直線兩兩相交,但任意三條不交于同一點(diǎn).若這n條直線將平面分成f(n)個(gè)部分,則f(3)=
 
;f(n)=
 
考點(diǎn):歸納推理
專題:規(guī)律型
分析:仔細(xì)分析題設(shè)中的數(shù)據(jù),尋找數(shù)量間的相互關(guān)系,總結(jié)規(guī)律,進(jìn)行求解.
解答: 解:一條直線最多將平面分為2個(gè)部分;
二條直線最多將平面分為4個(gè)部分;
三條直線最多將平面分為7個(gè)部分;
四條直線最多將平面分為11個(gè)部分;
五條直線最多將平面分為16個(gè)部分;
5條直線最多將平面分成16個(gè)部分.
分析上面一組數(shù)據(jù),我們不難發(fā)現(xiàn)二條直線分平面的4部分是在一條直線分平面的2部分的基礎(chǔ)上增添了2部分;
三條直線分平面的7部分恰好是二條直線分平面的4部分的基礎(chǔ)上增添了3部分;
類似地,四條直線分平面的11部分是在三條直線分平面的7部分的基礎(chǔ)上增添了4部分

仿照此分析法可以得出,n條直線最多分平面的部分?jǐn)?shù)為:
2+2+3+…+(n-1)+n=1+[1++2+3+…+(n-1)+n]=
n2+n+2
2

故答案為:7;  
n2+n+2
2
點(diǎn)評(píng):本題考查歸納推理的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意尋找規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=x2-mlnx在(0,1]上為減函數(shù),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα,tanβ是方程3x2+5x-7=0的兩根,則
sin(α+β)
cos(α-β)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=loga(1+x)+loga(3-x)(a>0,a≠1),且f(1)=2.
(1)求a的值及f(x)的定義域.
(2)求f(x)在區(qū)間[0,
3
2
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(1+cosα,sinα),參數(shù)α∈[0,π],點(diǎn)Q在曲線C:ρ=
9
2
sin(θ+
π
4
)
上,則點(diǎn)P與點(diǎn)Q之間距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將5名志愿者分配到3各不同的世博會(huì)場(chǎng)館參加接待工作,每個(gè)場(chǎng)館至少分配一名志愿者的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{lnan}是公差為1的等差數(shù)列,其前n項(xiàng)和為Sn,且S11=55,則a2的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果袋中有6個(gè)紅球,4個(gè)白球,從中取一個(gè)球,(1)記住顏色后放回,連續(xù)摸4次,則恰好第四次摸到紅球的概率為
 
,(2)記住顏色后不放回,連續(xù)摸4次,則恰好第四次摸到紅球的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

己知
e1
,
e2
是夾角為60°的兩個(gè)單位向量,則
a
=2
e1
+
e2
模是( 。
A、3
B、
5
C、
7
D、7

查看答案和解析>>

同步練習(xí)冊(cè)答案