已知集合A={x|x2+3x-4<0},集合B={x|
x-2
x+4
<0}

(1)求A∩B,A∪B;
(2)求(∁RA)∩B.
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:根據(jù)集合的基本運(yùn)算即可得到結(jié)論.
解答: 解:A=A={x|x2+3x-4<0}=(-4,1),B={x|
x-2
x+4
<0}
=(-4,2),
(1)A∩B=A=(-4,1),A∪B=B=(-4,2)
(2)∁RA={x|x≥1或x≤-4},則(CRA)∩B=[1,2).
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,根據(jù)不等式的解法求出集合A,B是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2+c2-b2=
1
2
ac,則cosB的值為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式的值:
(1)(0.064)-
1
3
-(-
5
9
)0+[(-2)3]-
4
3
+16-0.75

(2)
1
2
lg25+lg2-lg
0.1
-log29×log3
2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|
ln(2x-1)
x-5
<0}
,B={
x
y
|4<x<12,1<y<2}
,則A∪B=(  )
A、(1,12)
B、(1,6)
C、(2,5)
D、(4,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=cos(2x-
π
3
)
的圖象,可由函數(shù)y=cos2x的圖象( 。
A、向左平移
π
3
個(gè)長度單位
B、向右平移
π
3
個(gè)長度單位
C、向左平移
π
6
個(gè)長度單位
D、向右平移
π
6
個(gè)長度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)定義域?yàn)镈的函數(shù),若存在距離為d的兩條平行直線l l:y=kx+ml和l 2:y=kx+m2(ml<m2),使得當(dāng)x∈D時(shí),kx+m1≤f(x)≤kx+m2恒成立,則稱函數(shù)f(x)在(x∈D)有一個(gè)寬度為d的通道.有下列函數(shù):
①f(x)=
1
x
;②f(x)=sinx;③f(x)=
x2-1
;④f(x)=x3+1
其中在[1,+∞)上有一個(gè)通道寬度為1的函數(shù)題號(hào)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,2,3,4,5},用適當(dāng)?shù)姆?hào)填空:
①{1,2}
 
A;
②3
 
A;
③{6}
 
A;
④6
 
A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(-1,1)上的奇函數(shù)f(x).在x∈(-1,0)時(shí),f(x)=2x+2-x
(1)試求f(x)的表達(dá)式;
(2)用定義證明f(x)在(-1,0)上是減函數(shù);
(3)若對(duì)于x∈(0,1)上的每一個(gè)值,不等式t•2x•f(x)<4x-1恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從⊙C:x2+y2-6x-8y+24=0外一點(diǎn)P向該圓引切線PT,T為切點(diǎn),且|PT|=|PO|(O為坐標(biāo)原點(diǎn))
(1)|PT|的最小值為多少?
(2)|PT|取得最小值時(shí)點(diǎn)P的坐標(biāo)為?

查看答案和解析>>

同步練習(xí)冊(cè)答案