【題目】已知函數(shù)是定義域?yàn)?/span>的奇函數(shù),當(dāng).
(Ⅰ)求出函數(shù)在上的解析式;
(Ⅱ)在答題卷上畫(huà)出函數(shù)的圖象,并根據(jù)圖象寫(xiě)出的單調(diào)區(qū)間;
(Ⅲ)若關(guān)于的方程有三個(gè)不同的解,求的取值范圍。
【答案】(Ⅰ);(Ⅱ)單調(diào)增區(qū)間為,
單調(diào)減區(qū)間為;(Ⅲ) .
【解析】試題分析; (Ⅰ)①由于函數(shù)是定義域?yàn)?/span>的奇函數(shù),則;
②當(dāng)時(shí), ,因?yàn)?/span>是奇函數(shù),所以,可得當(dāng)時(shí) 的解析式,從而得到在上的解析式;
(Ⅱ)根據(jù)(Ⅰ)得到的解析式可畫(huà)出函數(shù)的圖象,進(jìn)而得到的單調(diào)區(qū)間;
(Ⅲ)由(1)可得 有極大值1,極小值-1,進(jìn)而可構(gòu)造關(guān)于 的不等式,解不等式可得答案.
試題分析;(Ⅰ)①由于函數(shù)是定義域?yàn)?/span>的奇函數(shù),則;
②當(dāng)時(shí), ,因?yàn)?/span>是奇函數(shù),所以.
所以.
綜上:
(Ⅱ)圖象如圖所示.(圖像給2分)
單調(diào)增區(qū)間:
單調(diào)減區(qū)間:
(Ⅲ)∵方程有三個(gè)不同的解
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解初三學(xué)生女生身高情況,某中學(xué)對(duì)初三女生身高進(jìn)行了一次測(cè)量,所得數(shù)據(jù)整理后列出了頻率分布表如下:
組 別 | 頻數(shù) | 頻率 |
[145.5,149.5) | 1 | 0.02 |
[149.5,153.5) | 4 | 0.08 |
[153.5,157.5) | 20 | 0.40 |
[157.5,161.5) | 15 | 0.30 |
[161.5,165.5) | 8 | 0.16 |
[165.5,169.5) | m | n |
合 計(jì) | M | N |
(1)求出表中所表示的數(shù);
(2)畫(huà)出頻率分布直方圖;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求的值;
(2)求函數(shù)在的最小值;
(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,梯形ABCD中,AD∥BC,∠C= ,以AB為直徑的⊙O恰與CD相切于點(diǎn)E,⊙O交BC于F,連結(jié)EF.
(1)求證:AD+BC=AB;
(2)求證:EF是AD與AB的等比中項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2x+log2x+b在區(qū)間( ,4)上有零點(diǎn),則實(shí)數(shù)b的取值范圍是( )
A.(﹣10,0)
B.(﹣8,1)
C.(0,10)
D.(1,12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè):實(shí)數(shù)滿足,其中;
:實(shí)數(shù)滿足.
(Ⅰ)若,且為真,求實(shí)數(shù)的取值范圍;
(Ⅱ)若是的必要不充分條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)對(duì)一切實(shí)數(shù)都有 成立,且.
(1)求的值;
(2)求的解析式;
(3)已知,設(shè):當(dāng)時(shí),不等式 恒成立;Q:當(dāng)時(shí),是單調(diào)函數(shù)。如果滿足成立的的集合記為,滿足Q成立的的集合記為,求A∩(CRB)(為全集).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)為迎接校運(yùn)動(dòng)會(huì)的到來(lái),在三年級(jí)招募了16名男志愿者和14名女志愿者.調(diào)查發(fā)現(xiàn),男、女志愿者中分別各有10人和6人喜歡運(yùn)動(dòng),其余人員不喜歡運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表,并說(shuō)明是否有95%的把握認(rèn)為性別與喜歡運(yùn)動(dòng)有關(guān);
喜歡運(yùn)動(dòng) | 不喜歡運(yùn)動(dòng) | 總計(jì) | |
男 | |||
女 | |||
總計(jì) |
(2)如果喜歡運(yùn)動(dòng)的女志愿者中恰有4人懂得醫(yī)療救護(hù),現(xiàn)從喜歡運(yùn)動(dòng)的女志愿者中抽取2名負(fù)責(zé)處理應(yīng)急事件,求抽出的2名志愿者都懂得醫(yī)療救護(hù)的概率.
附:K2=,
P(K2≥k0) | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com