設(shè)S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素與之對應(yīng))有a*(b*a)=b,則對任意的a,b∈S,下列等式中不恒成立的是( )
A.(a*b)*a=a
B.[a*(b*a)]*(a*b)=a
C.b*(b*b)=b
D.(a*b)*[b*(a*b)]=b
【答案】分析:本題主要考查應(yīng)用新定義解決數(shù)學(xué)問題的能力,體現(xiàn)了對創(chuàng)新思維能力的考查力度.根據(jù)已知中a*(b*a)=b,對四個答案的結(jié)論逐一進行論證,不難得到正確的結(jié)論.
解答:解:根據(jù)條件“對任意的a,b∈S,有a*(b*a)=b”,則:
選項B中,[a*(b*a)]*(a*b)]=b*(a*b)=a,一定成立.
選項C中,b*(b*b)=b,一定成立.
選項D中,(a*b)*[b*(a*b)]=b,一定成立.
故選A.
點評:創(chuàng)新是民族發(fā)展的靈魂,近幾年高考對創(chuàng)新能力的考查,已經(jīng)成為命題的熱點,并有逐年加大比例的趨勢.而應(yīng)用新定義解決問題,是常見的考查題型,相當(dāng)于在生產(chǎn)中給了一種生產(chǎn)工具和使用說明,我們能不能用好此工具,這一能力固然重要.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

16、設(shè)S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).若對任意的a,b∈S,有a*(b*a)=b,則對任意a,b∈S,給出下列關(guān)系式:①(a*b)*a=a; ②[a*(b*a)]*(a*b)=a;③b*(b*b)=b; ④(a*b)*[b*(a*b)]=b,其中正確命題的序號是
②③④
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

8、設(shè)S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素與之對應(yīng))有a*(b*a)=b,則對任意的a,b∈S,下列等式中不恒成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是至少含有兩個元素的集合.在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).若對于任意的a,b∈S,有a*(b*a)=b,則對任意的a,b∈S,下列等式中不能成立的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)S是至少含有兩個元素的集合,在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).已知對任意的a,b∈S,有a*(b*a)=b;則對任意的a,b∈S,給出下面四個等式:
(1)(a*b)*a=a  (2)[a*(b*a)]*(a*b)=a   (3)b*(a*b)=a  (4)(a*b)*[b*(a*b)]=b  
上面等式中恒成立的有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•虹口區(qū)二模)設(shè)S是至少含有兩個元素的集合.在S上定義了一個二元運算“*”(即對任意的a,b∈S,對于有序元素對(a,b),在S中有唯一確定的元素a*b與之對應(yīng)).若對任意的a,b∈S,有a*(b*a)=b,則對任意的a,b∈S,下列等式:①b*(b*b)=b   ②(a*b)*[b*(a*b)]=b   ③(a*b)*a=a中,恒成立的是
①②
①②
(寫出序號)

查看答案和解析>>

同步練習(xí)冊答案