某工廠產(chǎn)生的廢氣經(jīng)過過濾后排放,過濾過程中廢氣的污染物數(shù)量P(mg/L)與時間t(小時)間的關(guān)系為P=P0e-kt.如果在前5個小時消除了10%的污染物,試求:
(1)10個小時后還剩百分之幾的污染物?
(2)污染物減少50%所需要的時間.(參考數(shù)據(jù):ln2=0.7,ln3=1.1,ln5=1.6)
考點:函數(shù)模型的選擇與應(yīng)用
專題:應(yīng)用題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)由5小時后剩留的污染物列等式求出P=P0e-kt中k的值,得到具體關(guān)系式后代t=10求得10個小時后還剩污染物的百分數(shù);
(2)由污染物減少50%,即P=50%P0列等式50%P0=P0e(
1
5
ln0.9)t
求解污染物減少50%所需要的時間.
解答: 解:(1)由P=P0e-kt,可知,當t=0時,P=P0
當t=5時,P=(1-10%)P0.于是有
(1-10%)P0=P0e-5k,解得k=-
1
5
ln0.9
,那么P=P0e(
1
5
ln0.9)t

∴當t=10時,P=P0e(
1
5
ln0.9)×10
=P0eln0.81
=81%P0
∴10個小時后還剩81%的污染物;
(2)當P=50%P0時,有50%P0=P0e(
1
5
ln0.9)t
,
解得t=
ln0.5
1
5
ln0.9
=
5ln
1
2
ln
9
10
=5•
-ln2
ln9-ln10
=5•
ln2
ln2+ln5-2ln3
=35

∴污染物減少50%所需要的時間為35個小時.
點評:本題考查了函數(shù)模型的選擇及應(yīng)用,關(guān)鍵是對題意的理解,由題意正確列出相應(yīng)的等式,考查了計算能力,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知(x2-
1
x
)n
的展開式中含x的項為第6項,且(1-x+2x2)n=a0+a1x+a2x2+…+a2nx2n,
(1)求n的值;
(2)求a1+a2+…+a2n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,長方體ABCD-A1B1C1D1中,E為線段BC的中點,AB=1,AD=2,AA1=
2

(Ⅰ)證明:DE⊥平面A1AE;
(Ⅱ)求點A到平面A1ED的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果一條拋物線y=ax2+bx+c(a≠0)與x軸有兩個交點,那么以該拋物線的頂點和這兩個交點為頂點的三角形稱為這條拋物線的“拋物線三角形”.
(Ⅰ)“拋物線三角形”一定是
 
三角形(提示:在答題卡上作答);
(Ⅱ)若拋物線m:y=a(x-2)2+b(a>0,b<0)的“拋物線三角形”是直角三角形,求a,b滿足的關(guān)系式;
(Ⅲ)如圖,△OAB是拋物線n:y=-x2+tx(t>0)的“拋物線三角形”,是
否存在以原點O為對稱中心的矩形ABCD?若存在,求出過O、C、D三點的拋物線的表達式;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,邊長為3的正方形ABCD中
(1)點E、F分別是AB、BC上的點,將△BEF,△AED,△DCF分別沿EF、DE、DF折起,使A、B、C三點重合于點P,求PD與平面EFD所成角的正弦值;
(2)當BE=BF=
1
3
BC時,將△AED,△DCF分別沿DE、DF折起,使A、C兩點重合于點Q,求點E到平面QDF的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有4個紅球和6個白球,每個球都可以區(qū)分,從中取出4個,
(1)取出紅球比白球多的取法有多少種?
(2)假設(shè)取到一個紅球得2分,取到一個白球得1分,那么4個球的總分不少于5分的取法有多少種?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,在銳角△PAD中PA=PD,并且BD=2AD=8,AB=2DC=4
5

(1)點M是PC上的一點,證明:平面MBD⊥平面PAD;
(2)若PA與平面PBD成角60°,當面MBD⊥平面ABCD時,求點M到平面ABCD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P(a,0),對于拋物線y2=2x上任一點Q,都有|PQ|≥|a|,則實數(shù)a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(幾何證明選講選做題) 如圖,∠ACB=90°,AC是圓O的切線,切點為E,割線ADB過圓心O,若AE=
3
,AD=1
,則BC的長為
 

查看答案和解析>>

同步練習冊答案