已知集合A={(x,y)|x+y=2},B={(x,y)|x-y=4},那么集合A∩B為
 
考點:交集及其運算
專題:集合
分析:聯(lián)立A與B中的方程組成方程組,求出方程組的解集即可確定出A與B的交集.
解答: 解:聯(lián)立得:
x+y=2
x-y=4

解得:
x=3
y=-1
,
則A∩B={(3,-1)}.
故答案為:{(3,-1)}
點評:此題考查了交集及其運算,熟練掌握交集的定義是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于定義域為D的函數(shù)f(x),同時滿足下列條件:①f(x)在D內單調遞增或單調遞減:②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域為[a,b];那么把函數(shù)y=f(x)(x∈D)叫做閉函數(shù).若y=k+
x
(k為常數(shù),k<0)是閉函數(shù),則常數(shù)k是的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題P:?x∈(1,+∞),m≤x+
4
x-1

命題q:拋物線x2=4y與直線y=x+m沒有公共點.
(Ⅰ)寫出命題P的否定;
(Ⅱ)如果命題P或q為真命題,P且q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若命題 p:“?x0∈R,x02-x0+1<0”,則¬p為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算(lg2)2+lg20•lg5=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由余弦函數(shù)的周期性可知:
余弦函數(shù)在每一個閉區(qū)間
 
上都是增函數(shù),其值從-1增大到1;在每一個閉區(qū)間
 
上都是減函數(shù),其值從1減小到-1.
從上述對正弦函數(shù)、余弦函數(shù)的單調性的討論中容易得到:
正弦函數(shù)當且僅當x=
 
時取得最大值1,當且僅當x=
 
時取得最小值-1;
余弦函數(shù)當且僅當x=
 
時取得最大值1;當且僅當x=
 
時取得最小值-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖及部分數(shù)據(jù)如圖所示,側視圖為等腰三角形,俯視圖為正方形,則這個幾何體的體積為(  )
A、
1
3
B、
2
3
C、1
D、
4
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=ax-x.
(1)求函數(shù)y=f(x)的極值點;
(2)對x∈R使f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx,x∈[0,2π]是奇函數(shù).
 
(判斷對錯)

查看答案和解析>>

同步練習冊答案