已知函數(shù)f(x)=loga(x2-ax+3),若函數(shù)f(x)的值域為R,求實數(shù)a的取值范圍.
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:本題是一個對數(shù)函數(shù)類型,由于函數(shù)f(x)的值域是R,所以真數(shù)t=x2-ax+1的取值范圍應(yīng)該包含正實數(shù)集,利用二次函數(shù)值域的理論可得根的判別式大于或等于0,再結(jié)合對數(shù)的底數(shù)必須大于0且不等于1,可得實數(shù)a的取值范圍.
解答: 解:∵函數(shù)f(x)的值域是R,
∴設(shè)真數(shù)t=x2-ax+3,為關(guān)于x的二次函數(shù),設(shè)其值域為M,
則必定有(0,+∞)⊆M,
∵二次函數(shù)t=x2-ax+3圖象是開口向上的拋物線,
∴△=a2-12≥0⇒a≥2
3
或a≤-2
3
,
又∵對數(shù)的底數(shù)為a,a>0且a≠1,
∴a≥2
3
,
故答案為:[2
3
,+∞).
點評:本題考點是對數(shù)函數(shù)的值域與最值,考查對數(shù)函數(shù)的定義其定義域為全體實數(shù)的等價條件的理解,本題是一個易錯題,應(yīng)依據(jù)定義理清轉(zhuǎn)化的依據(jù)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,在AC上取點N,使得AN=
1
3
AC,在AB上取點M,使得AM=
1
3
AB,在BN的延長線上取點P,使得NP=
1
2
BN,在CM的延長線取一點Q,使MQ=λCM時,
AP
=
QA
,試確定λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=cos(
π
4
-x)的單調(diào)遞增區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)滿足f(x+1)=-f(x),則f(2013)+f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,A、B兩點的坐標(biāo)分別為(0,1)、(0,-1),動點P滿足直線AP與直線BP的斜率之積為-
1
4
,直線AP、BP與直線y=-2分別交于點M、N.
(1)求動點P的軌跡方程;
(2)求線段MN的最小值;
(3)以MN為直徑的圓是否經(jīng)過某定點?若經(jīng)過定點,求出定點的坐標(biāo);若不經(jīng)過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知頂點在原點開口向右的拋物線C經(jīng)過定點P(3,2
3
),斜率為2的直線l交拋物線C于A,B兩點,且|AB|=3
5
,求圓錐曲線C和直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:tan2α-sin2α=tan2α•sin2α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-
π
2
≤φ≤
π
2
)的圖象如圖所示,則f(1)的值為( 。
A、
2
B、1+
2
C、2+
2
D、2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,AB=2,AD=
3
,P是AB的中點,該矩形有一內(nèi)接Rt△PQR,P為直角頂點,Q、R分別落在線段BC和線段AD上,記Rt△PQR的面積為S. 
(Ⅰ)設(shè)∠BPQ為α,求S=f(α)及f(α)的最大值;
(Ⅱ)設(shè)BQ=x,求S=g(x)及g(x)的最小值.

查看答案和解析>>

同步練習(xí)冊答案