已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左右焦點(diǎn)分別為F1、F2,P為右支上一點(diǎn),點(diǎn)Q滿足
F1Q
1
QP
(λ1>0)且|
F1Q
|=2a,雙曲線上的點(diǎn)T滿足:
F2T
2
TQ
,
PT
F2Q
=0,則|OT|的值為( 。
A、4a
B、2a
C、a
D、
a
2
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)雙曲線的定義,結(jié)合題意|
F1Q
|=2a證出
|PQ|
=
|PF2|
,即△PQF2是等腰三角形.由
PT
F2Q
=0得
PT
F2Q

所以PT是等腰△PQF2底邊上的中線,從而證出OT是△QF1F2的中位線,可得|OT|的值為a.
解答: 解:∵點(diǎn)P在雙曲線
x2
a2
-
y2
b2
=1的右支上,
∴根據(jù)雙曲線的定義,可得
|PF1|
-
|PF2|
=2a
,
又∵|
F1Q
|=2a,可得
|PF1|
-
|PQ|
=2a
,
|PQ|
=
|PF2|
,即△PQF2是等腰三角形.
PT
F2Q
=0,可得
PT
F2Q
,
∴PT是等腰△PQF2底邊上的中線,
因此△QF1F2中,OT是中位線,可得|OT|=
1
2
|F1Q|
=a.
故選:C
點(diǎn)評:本題給出雙曲線滿足的條件,求線段OT的長.著重考查了雙曲線的定義及簡單幾何性質(zhì)、向量的數(shù)量積運(yùn)算性質(zhì)等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若集合A={x|1≤x≤3},集合B={x|x<2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α∈(
π
2
,π),則3cos2α=sin(
π
4
-α),則sin2α的值為( 。
A、
1
18
B、-
1
18
C、
17
18
D、-
17
18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a=2,sinA:sinB=
3
:3
,則邊b=( 。
A、
3
B、2
3
C、3
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+y=1與圓x2+y2=a交于A、B兩點(diǎn),O是原點(diǎn),C是圓上一點(diǎn),若
OA
+
OB
=
OC
,則a的值為( 。
A、1
B、
2
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項(xiàng)均為正數(shù)的等比數(shù)列{an}中,2a1+a2=a3,則
a4+a5
a3+a4
的值為( 。
A、-1B、-1或2C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

六人按下列要求站一橫排,分別有多少種不同的站法?
(1)甲、乙不相鄰;
(2)甲、乙之間間隔兩人;
(3)甲不站左端,乙不站右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,ABCD是邊長為2的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF=3.
(1)求證:AC⊥平面BDE;
(2)求直線AB與平面BEF所成的角的正弦值;
(3)線段BD上是否存在點(diǎn)M,使得AM∥平面BEF?若存在,試確定點(diǎn)M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在矩形ABCD中,點(diǎn)E為邊AD上的點(diǎn),點(diǎn)F為邊CD的中點(diǎn),AB=AE=
2
3
AD
,現(xiàn)將△ABE沿BE邊折至△PBE位置,且平面PBE⊥平面BCDE.
(Ⅰ) 求證:平面PBE⊥平面PEF;
(Ⅱ) 求二面角E-PF-C的大。

查看答案和解析>>

同步練習(xí)冊答案