已知x=
2
是函數(shù)f(x)=
(x2-2ax)ex,x>0
bx,       x≤0
的極值點(diǎn).
(1)當(dāng)b≠0時(shí),討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)b∈R時(shí),函數(shù)y=f(x)-m有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
分析:(1)當(dāng)x>0時(shí),f′(x)=(2x-2a)ex+(x2-2ax)ex=[x2+2(1-a)x-2a]ex.由f(
2
)=0
,解得a=1.由此能夠得到當(dāng)b≠0時(shí),函數(shù)f(x)的單調(diào)性.
(2)當(dāng)x∈(0,
2
)時(shí),f(x)單調(diào)遞減,f(x)∈((2-2
2
)e
2
,0
),當(dāng)x∈(
2
,+∞)
時(shí),f(x)單調(diào)遞增,f(x)∈((2-2
2
e
2
,+∞).要使函數(shù)y=f(x)-m有兩個(gè)零點(diǎn),則函數(shù)y=f(x)的圖象與直線y=m有兩個(gè)不同的交點(diǎn).由此能求出實(shí)數(shù)m的取值范圍.
解答:解:(1)當(dāng)x>0時(shí),f(x)=(x2-2ax)ex,
∴f′(x)=(2x-2a)ex+(x2-2ax)ex
=[x2+2(1-a)x-2a]ex
由已知得,f(
2
)=0
,∴2+2
2
-2a-2
2
a
=0,解得a=1.…(3分)
∴f(x)=(x2-2x)ex,∴f′(x)=(x2-2)ex
當(dāng)x∈(0,
2
)時(shí),f′(x)<0,當(dāng)x∈(
2
,+∞
)時(shí),f′(x)>0.又f(0)=0,
所以當(dāng)b<0時(shí),f(x)在(-∞,
2
)上單調(diào)遞減,(
2
,+∞
)單調(diào)遞增;
當(dāng)b>0時(shí),f(x)在(-∞,0),(
2
,+∞
)上單調(diào)遞增,在(0,
2
)上單調(diào)遞減. …(7分)
(2)由(1)知,當(dāng)x∈(0,
2
)時(shí),f(x)單調(diào)遞減,f(x)∈((2-2
2
)e
2
,0
),
當(dāng)x∈(
2
,+∞)
時(shí),f(x)單調(diào)遞增,f(x)∈((2-2
2
e
2
,+∞).…(9分)
要使函數(shù)y=f(x)-m有兩個(gè)零點(diǎn),則函數(shù)y=f(x)的圖象與直線y=m有兩個(gè)不同的交點(diǎn).
①當(dāng)b>0時(shí),m=0或m=(2-
2
e
2

②當(dāng)b=0時(shí),m∈((2-2
2
e
2
,0);
 ③當(dāng)b<0時(shí),m∈((2-2
2
e
2
,+∞).…(13分)
點(diǎn)評(píng):本題考查函數(shù)單調(diào)性的求法,考查實(shí)數(shù)的取值范圍的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x=2是函數(shù)f(x)=(x2+ax-2a-3)ex的一個(gè)極值點(diǎn)(e=2.718…).實(shí)數(shù)a的值為(  )
A、-3
B、-
1
3
C、
1
3
D、-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=
2
是函數(shù)f(x)=
(x2-2ax)ex,x>0
bx,x<0
的極值點(diǎn).
(Ⅰ)當(dāng)b=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)b∈R時(shí),函數(shù)y=f(x)-m有兩個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=2是函數(shù)f(x)=alnx+x2-12x的一個(gè)極值點(diǎn).
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=2是函數(shù)f(x)=(x2+ax-2a-3)ex的一個(gè)極值點(diǎn)
(I)求實(shí)數(shù)a的值;
(II)求函數(shù)f(x)在x∈[
32
,3]
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x=2是函數(shù)f(x)=
x-a
x2
的一個(gè)極值點(diǎn),則f(x)的單調(diào)遞減區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案