已知函數(shù)f(x)=kx,,k為非零實(shí)數(shù).
(Ⅰ)設(shè)t=k2,若函數(shù)f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,求k的取值范圍;
(Ⅱ)是否存在正實(shí)數(shù)k,都能找到t∈[1,2],使得關(guān)于x的方程f(x)=g(x)在[1,5]上有且僅有一個實(shí)數(shù)根,且在[-5,-1]上至多有一個實(shí)數(shù)根.若存在,請求出所有k的值的集合;若不存在,請說明理由.
【答案】分析:(Ⅰ)先求出函數(shù)g(x)的導(dǎo)數(shù),利用f(x),g(x)在區(qū)間(0,+∞)上單調(diào)性相同,建立一個條件方程,然后求k的取值范圍.
(Ⅱ)利用f(x)=g(x),構(gòu)造新函數(shù)h(x)=f(x)-g(x)=kx3+x2-t,然后求導(dǎo),利用導(dǎo)數(shù)研究函數(shù)根的分布情況.
解答:解:(Ⅰ) (1)當(dāng)k>0時,因?yàn)閒(x)=kx在(0,+∞)上單調(diào)遞增,…(1分)
所以在(0,+∞)上單調(diào)遞增.
但在(0,+∞)上,所以不符合已知;…(3分)
(2)因?yàn)樵冢?,+∞)上,所以在(0,+∞)上單調(diào)遞減.
所以f(x)=kx在(0,+∞)上單調(diào)遞減,則k<0,即 k的取值范圍是(-∞,0).…(6分)
(Ⅱ)解:因?yàn)閒(x)=g(x)?kx3+x2-t=0.   …(7分)
設(shè)h(x)=kx3+x2-t,所以
因?yàn)閗>0,所以h(x)在,
而h(0)=-t<0,所以h(x)=0在[1,5]上至多一個實(shí)數(shù)根,在[-5,-1]上至多
有二個實(shí)數(shù)根.                         …(9分)
(1)由于k>0,要能找到t∈[1,2],使得關(guān)于x的方程h(x)=0在[1,5]上有且僅有一個實(shí)數(shù)根,必須存在t∈[1,2],使得:;          …(11分)
(2)因?yàn)椤澳苷业絫∈[1,2],使得關(guān)于x的方程h(x)=0在[-5,-1]上至多有一個實(shí)數(shù)
根”的反面是“對任意的t∈[1,2],使得關(guān)于x的方程h(x)=0在[-5,-1]上恰有
二個實(shí)數(shù)根”,即反面?對任意的t∈[1,2],下列不等式組成立..…(13分)
因?yàn)閗>0,所以,“能找到t∈[1,2],使得關(guān)于x的方程h(x)=0在[-5,-1]上至
多有一個實(shí)數(shù)根”.…(14分)
由(1)(2)同時成立得:
所以,存在正實(shí)數(shù)k符合要求,所有k的值的集合為:
{k|}.    …(15分)
(直接討論、或討論函數(shù)f(x)=kx,的圖象的關(guān)系或變量分離轉(zhuǎn)化
為三次函數(shù)討論,請酌情給分)
點(diǎn)評:本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),對應(yīng)兩個函數(shù)的相等問題,則一般需要構(gòu)造新函數(shù)去研究.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時,若對?x1∈(1,+∞),?x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
k+1x
(k<0),求使得f(x+k)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=k•a-x(k,a為常數(shù),a>0且a≠1)的圖象過點(diǎn)A(0,1),B(3,8).
(1)求實(shí)數(shù)k,a的值;
(2)若函數(shù)g(x)=
f(x)-1f(x)+1
,試判斷函數(shù)g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•蕪湖二模)給出以下五個命題:
①命題“?x∈R,x2+x+1>0”的否定是:“?x∈R,x2+x+1<0”.
②已知函數(shù)f(x)=k•cosx的圖象經(jīng)過點(diǎn)P(
π
3
,1),則函數(shù)圖象上過點(diǎn)P的切線斜率等于-
3

③a=1是直線y=ax+1和直線y=(a-2)x-1垂直的充要條件.
④函數(shù)f(x)=(
1
2
)x-x
1
3
在區(qū)間(0,1)上存在零點(diǎn).
⑤已知向量
a
=(1,-2)
與向量
b
=(1,m)
的夾角為銳角,那么實(shí)數(shù)m的取值范圍是(-∞,
1
2

其中正確命題的序號是
②③④
②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(已知函數(shù)f(x)=k[(logax)2+(logxa)2]-(logax)3-(logxa)3,(其中a>1),g(x)=x2-2bx+4,設(shè)t=logax+logxa.
(Ⅰ)當(dāng)x∈(1,a)∪(a,+∞)時,試將f(x)表示成t的函數(shù)h(t),并探究函數(shù)h(t)是否有極值;
(Ⅱ)當(dāng)k=4時,若對任意的x1∈(1,+∞),存在x2∈[1,2],使f(x1)≤g(x2),試求實(shí)數(shù)b的取值范圍..

查看答案和解析>>

同步練習(xí)冊答案