商店名稱 A B C D E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。畢⒖脊剑夯貧w直線的方程
是:
?
y
=bx+a
,其中b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
,其中
?
yi
是與xi對應(yīng)的回歸估計值.
分析:(1)根據(jù)連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料作出散點圖,由散點圖知兩個變量符合正相關(guān).
(2)設(shè)回歸直線的方程是
y
=bx+a,分別求出
.
x
,
.
y
,由b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
,a=
.
y
-b
.
x
,能求出利潤額y對銷售額x的回歸直線方程.
(3)由利潤額y對銷售額x的回歸直線方程,能求出當(dāng)銷售額為4千萬元時的利潤額.
解答:解:(1)根據(jù)連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料作出散點圖:

由散點圖知兩個變量符合正相關(guān). …(4分)
(五個點中,有錯的,不能得(2分),有兩個或兩個以上對的,至少得1分)
(2)設(shè)回歸直線的方程是:
?
y
=bx+a
,
.
x
=6,
.
y
=3.4
;…(6分)
b=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
=
-3×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.6
9+1+1+9
=
10
20
=
1
2

…(10分)a=0.4
∴y對銷售額x的回歸直線方程為:y=0.5x+0.4…(12分)
(3)當(dāng)銷售額為4(千萬元)時,利潤額為:
?
y
=0.5×4+0.4
=2.4(百萬元)                     …(14分)
點評:本題考查線性回歸方程,解題的關(guān)鍵是掌握住線性回歸方程中系數(shù)的求法公式及線性回歸方程的形式,按公式中的計算方法求得相關(guān)的系數(shù),得出線性回歸方程,本題考查了公式的應(yīng)用能力及計算能力,求線性回歸方程運算量較大,解題時要嚴謹,莫因為計算出錯導(dǎo)致解題失。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額如下表:
商店名稱 A B C D E
銷售額x/萬元 3 5 6 7 9
利潤額y/萬元 2 3 3 4 5
(1)畫出銷售額和利潤額的散點圖.
(2)若銷售額和利潤額具有相關(guān)關(guān)系,試計算利潤額y對銷售額x的回歸直線方程.
(3)估計要達到1萬元的利潤額,銷售額大約為多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D
E
銷售額x(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(1)畫出散點圖.觀察散點圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大。
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某零售商店近五個月的銷售額和利潤額資料如下表:
商店名稱 A B C D E
銷售額y(千萬元) 3 5 6 7 9
利潤額y(百萬元) 2 3 3 4 5
(1)畫出散點圖,觀察散點圖,說明兩個變量有怎樣的相關(guān)關(guān)系;
(2)用最小二乘法計算利潤額y關(guān)于銷售額x的回歸直線方程;
(3)當(dāng)銷售額為4(千萬元)時,利用(2)的結(jié)論估計該零售店的利潤額(百萬元).(參考公式
b
=
n
i=1
(xiyi)-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
a
=
.
y
-
b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D E
E
銷售額x(千萬元) 3 5 6 7 9
9
利潤額y(千萬元) 2 3 3 4 5
(1)在指定的坐標(biāo)系中畫出散點圖;
(2)求利潤額y對銷售額x的回歸直線方程;
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 A B C D E
銷售額(x)/千萬元 3 5 6 7
9
利潤額(y)/百萬元 2 3 3 4 5
(1)畫出銷售額和利潤額的散點圖.
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程y=bx+a,其中
^b=
n
i
=xiyi-n
.
x
.
y
n
i
=xi2-n
.
x
2
b
=y-
b
x

(3)若獲得利潤是4.5時估計銷售額是多少(百萬)?

查看答案和解析>>

同步練習(xí)冊答案