【題目】某市通過隨機詢問100名不同年級的學(xué)生是否能做到“扶跌倒老人”,得到如下列聯(lián)表:
做不到 | 能做到 | |
高年級 | 45 | 10 |
低年級 | 30 | 15 |
則下列結(jié)論正確的是( )
附參照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
參考公式:,其中
A. 在犯錯誤的概率不超過的前提下,認為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”
B. 在犯錯誤的概率不超過的前提下,“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”
C. 有以上的把握認為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”
D. 有以上的把握認為“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)對高三學(xué)生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):
(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明與的線性相關(guān)程度;(結(jié)果保留小數(shù)點后兩位,參考數(shù)據(jù): )
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
參考公式:,;相關(guān)系數(shù);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x﹣alnx+ .
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)的部分圖象.
(1)求函數(shù)的表達式;
(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;
(3)把函數(shù)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x(萬件) | 10 | 11 | 13 | 12 | 8 | 6 |
利潤y(萬元) | 22 | 25 | 29 | 26 | 16 | 12 |
附:
(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程
(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.
(1)設(shè)總造價(元)表示為長度的函數(shù);
(2)當(dāng)取何值時,總造價最低,并求出最低總造價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是( )
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1, )
C.(﹣ , )
D.(﹣∞,﹣1)∪(1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足(,且),且,設(shè),,數(shù)列滿足.
(1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項公式;
(2)求數(shù)列的前n項和;
(3)對于任意,,恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com