【題目】某市通過隨機詢問100名不同年級的學(xué)生是否能做到“扶跌倒老人”,得到如下列聯(lián)表:

做不到

能做到

高年級

45

10

低年級

30

15

則下列結(jié)論正確的是( )

附參照表:

0.10

0.025

0.01

2.706

5.024

6.635

參考公式:,其中

A. 在犯錯誤的概率不超過的前提下,認為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”

B. 在犯錯誤的概率不超過的前提下,“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”

C. 以上的把握認為“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”

D. 以上的把握認為“學(xué)生能否做到‘扶跌倒老人’與年級高低無關(guān)”

【答案】C

【解析】分析:根據(jù)列聯(lián)表中數(shù)據(jù),利用公式求得,參照臨界值表即可得到正確結(jié)論.

詳解由公式

可得參照臨界值表,

,

以上的把握認為,“學(xué)生能否做到‘扶跌倒老人’與年級高低有關(guān)”,故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究機構(gòu)對高三學(xué)生的記憶力和判斷力進行統(tǒng)計分析,得下表數(shù)據(jù):

(1)請根據(jù)上表提供的數(shù)據(jù),用相關(guān)系數(shù)說明的線性相關(guān)程度;(結(jié)果保留小數(shù)點后兩位,參考數(shù)據(jù):

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.

參考公式:,;相關(guān)系數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x﹣alnx+
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是函數(shù)的部分圖象.

1)求函數(shù)的表達式;

2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;

3)把函數(shù)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某百貨公司1~6月份的銷售量與利潤的統(tǒng)計數(shù)據(jù)如下表:

月份

1

2

3

4

5

6

銷售量x(萬件)

10

11

13

12

8

6

利潤y(萬元)

22

25

29

26

16

12

附:

(1)根據(jù)2~5月份的統(tǒng)計數(shù)據(jù),求出關(guān)于的回歸直線方程

(2)若由回歸直線方程得到的估計數(shù)據(jù)與剩下的檢驗數(shù)據(jù)的誤差均不超過萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?(參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設(shè)矩形的長為.

(1)設(shè)總造價(元)表示為長度的函數(shù);

(2)當(dāng)取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C:x2=4y的焦點為F,斜率為k的直線l經(jīng)過點F,若拋物線C上存在四個點到直線l的距離為2,則k的取值范圍是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣ ,
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)若關(guān)于的不等式的解集為,求的值;

(2)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列滿足,且),且,設(shè),數(shù)列滿足.

1)求證:數(shù)列是等比數(shù)列并求出數(shù)列的通項公式;

2)求數(shù)列的前n項和;

3)對于任意,,恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案