(1)甲、乙兩射手同時射擊一目標,甲的命中率為0.65,乙的命中率為0.60,那么能否得出結論:目標被命中的概率等于0.65+0.60=1.25,為什么?
(2)一射手命中靶的內圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出結論:目標被命中的概率等于0.25+0.50=0.75,為什么?
(3)兩人各擲一枚硬幣,“同時出現(xiàn)正面”的概率可以算得為.由于“不出現(xiàn)正面”是上述事件的對立事件,所以它的概率等于,這樣做對嗎?說明道理.
科目:高中數(shù)學 來源: 題型:
①從全年級14個班中任意抽取一個班,再從該班中任意抽取14人,考察他們的學習成績;②每個班都抽取1人,共計14人,考察這14個學生的成績;③把學校高三年級的學生按成績分成優(yōu)秀、良好、普通三個級別,從中抽取100名學生進行考查(已知若按成績分,該校高三學生中優(yōu)秀學生有105名,良好學生有420名,普通學生有175名).根據(jù)上面的敘述,試回答下列問題:
(1)上面三種抽取方式中,其總體、個體、樣本分別指什么?每一種抽取方式抽取的樣本中,其樣本容量分別是多少?
(2)上面三種抽取方式各自采用何種抽取樣本的方法?
(3)試分別寫出上面三種抽取方式各自抽取樣本的步驟.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年重慶市西南師大附中高三下學期五月月考數(shù)學(理) 題型:解答題
(本小題滿分12分)
古代印度婆羅門教寺廟內的僧侶們曾經(jīng)玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n()個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
查看答案和解析>>
科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學必修1單調性與最大(。┲稻毩暰恚ǘń馕霭妫 題型:填空題
下圖表示某市2008年6月份某一天的氣溫隨時間變化的情況,請觀察此圖回答下列問題:
(1)這天的最高氣溫是__________;
(2)這天共有______個小時的氣溫在31 ℃以上;
(3)這天在______(時間)范圍內溫度在上升;
(4)請你預測一下,次日凌晨1點的氣溫大約在______內.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆遼寧省高一第三次月考考試數(shù)學 題型:解答題
(12分)如圖所示,以AB=4 cm,BC=3 cm的長方形ABCD為底面的長方體被平面斜著截斷的幾何體,EFGH是它的截面.當AE=5 cm,BF=8 cm,CG=12 cm時,試回答下列問題:
(1)求DH的長;
(2)求這個幾何體的體積;
(3)截面四邊形EFGH是什么圖形?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年重慶市高三下學期五月月考數(shù)學(理) 題型:解答題
1. (本小題滿分12分)
古代印度婆羅門教寺廟內的僧侶們曾經(jīng)玩過一種被稱為“河內寶塔問題”的游戲,其玩法如下:如圖,設有n()個圓盤依其半徑大小,大的在下,小的在上套在A柱上,現(xiàn)要將套在A柱上的盤換到C柱上,要求每次只能搬動一個,而且任何時候不允許將大盤套在小盤上面,假定有三根柱子A、B、C可供使用.
現(xiàn)用an表示將n個圓盤全部從A柱上移到C柱上所至少需要移動的次數(shù),回答下列問題:
(1) 寫出a1,a2,a3,并求出an;
(2) 記,求和();
(其中表示所有的積的和)
(3) 證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com