分析 (1)對函數(shù)進行求導,然后令導函數(shù)大于0求出x的范圍,令導函數(shù)小于0求出x的范圍,即可得到答案;
(2)由函數(shù)f(x)在x=1處取得極值求出a的值,再依據(jù)不等式恒成立時所取的條件,求出實數(shù)m的取值范圍即可.
解答 解:(1)當a=3時,f(x)=3x-1-lnx(a∈R),x>0,
∴f′(x)=3-$\frac{1}{x}$=$\frac{3x-1}{x}$,
當f′(x)>0時,即x>$\frac{1}{3}$時,函數(shù)單調(diào)遞增,
當f′(x)<0時,即0<x<$\frac{1}{3}$時,函數(shù)單調(diào)遞減,
故f(x)在($\frac{1}{3}$,+∞)上為增函數(shù),在(0,$\frac{1}{3}$)上為減函數(shù).
(2)∵f′(x)=a-$\frac{1}{x}$,函數(shù)f(x)在x=1處取得極值,
∴f′(1)=a-1=0,
解得a=1,
∵對?x∈(0,+∞),f(x)≥3mx-2恒成立,
∴x-1-lnx≥3mx-2在(0,+∞)上恒成立,
即m≤$\frac{1}{3}$(1+$\frac{1}{x}$-$\frac{lnx}{x}$),
設g(x)=1+$\frac{1}{x}$-$\frac{lnx}{x}$,
∴g′(x)=-$\frac{1}{{x}^{2}}$-$\frac{1-lnx}{{x}^{2}}$=$\frac{lnx-2}{{x}^{2}}$,
令g′(x)=0,解得x=e2,
當g′(x)>0時,即x>e2時,函數(shù)單調(diào)遞增,
當g′(x)<0時,即0<x<e2時,函數(shù)單調(diào)遞減,
當x=e2時函數(shù)有極小值,也是最小值,
∴g(x)min=g(e2)=1+$\frac{1}{{e}^{2}}$-$\frac{2}{{e}^{2}}$=1-$\frac{1}{{e}^{2}}$,
∴m≤$\frac{1}{3}$-$\frac{1}{3{e}^{2}}$
故m的取值范圍為(-∞,$\frac{1}{3}$-$\frac{1}{3{e}^{2}}$].
點評 本題主要考查導函數(shù)的正負與原函數(shù)的單調(diào)性之間的關(guān)系,即當導函數(shù)大于0時原函數(shù)單調(diào)遞增,當導函數(shù)小于0時原函數(shù)單調(diào)遞減.會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.掌握不等式恒成立時所取的條件.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 3 | B. | 5 | C. | 2$\sqrt{5}$-1 | D. | 2$\sqrt{5}$+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com