(06年山東卷理)(12分)
雙曲線C與橢圓有相同的焦點,直線為C的一條漸近線。
(1)求雙曲線C的方程;
(2)過點的直線,交雙曲線C于A、B兩點,交軸于Q點(Q點與C的頂點不重合),當(dāng),且時,求點的坐標(biāo)。
解析:(Ⅰ)設(shè)雙曲線方程為,由橢圓
求得兩焦點為,
對于雙曲線,又為雙曲線的一條漸近線
解得 ,
雙曲線的方程為
(Ⅱ)解法一:
由題意知直線的斜率存在且不等于零。
設(shè)的方程:,,則
,
在雙曲線上,
同理有:
若則直線過頂點,不合題意.
是二次方程的兩根.
,,
此時.
所求的坐標(biāo)為.
解法二:
由題意知直線的斜率存在且不等于零
設(shè)的方程,,則.
,分的比為.
由定比分點坐標(biāo)公式得
下同解法一
解法三:
由題意知直線的斜率存在且不等于零
設(shè)的方程:,則.
,
.
,
,,
又,,即
將代入得
,否則與漸近線平行。
。
,,
解法四:
由題意知直線l得斜率k存在且不等于零,設(shè)的方程:,
則
,。
同理,.
即 。 (*)
又
消去y得.
當(dāng)時,則直線l與雙曲線得漸近線平行,不合題意,。
由韋達(dá)定理有:
代入(*)式得
所求Q點的坐標(biāo)為。
科目:高中數(shù)學(xué) 來源: 題型:
(06年山東卷理)設(shè)f(x)= 則不等式f(x)>2的解集為( )
(A)(1,2)(3,+∞) (B)(,+∞)
(C)(1,2) ( ,+∞) (D)(1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年山東卷理)(12分)
如圖,已知平面平行于三棱錐的底面ABC,等邊△所在的平面與底面ABC垂直,且∠ACB=90°,設(shè)
(1)求證直線是異面直線與的公垂線;
(2)求點A到平面VBC的距離;
(3)求二面角的大小。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(06年山東卷理)(14分)
已知,點在函數(shù)的圖象上,其中
(1)證明數(shù)列是等比數(shù)列;
(2)設(shè),求及數(shù)列的通項;
(3)記,求數(shù)列的前項,并證明
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com