平面內(nèi)已知兩點(diǎn)A(0,2)、B(0,-2),若動(dòng)點(diǎn)P滿足|PA|+|PB|=4,則點(diǎn)P的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.線段
∵點(diǎn)A(0,2)、B(0,-2),∴|AB|=4
又∵動(dòng)點(diǎn)P滿足|PA|+|PB|=4,
∴點(diǎn)P在直線AB上,且在A、B之間(含站點(diǎn))
由此可得,點(diǎn)P的軌跡是線段AB
故選:D
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=x+1與該橢圓相交于PQ,且OPOQ,|PQ|=.求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正四面體P-ABC中,點(diǎn)M在面PBC內(nèi),且點(diǎn)M到點(diǎn)P的距離等于點(diǎn)M到底面ABC的距離則動(dòng)點(diǎn)M在面PBC的軌跡是(  )
A.拋物線的一部分B.橢圓的一部分
C.雙曲線的一部分D.圓的一部分

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD=
3
2
,BC=
1
2
.橢圓G以A、B為焦點(diǎn)且經(jīng)過(guò)點(diǎn)D.
(Ⅰ)建立適當(dāng)坐標(biāo)系,求橢圓G的方程;
(Ⅱ)若點(diǎn)E滿足
EC
=
1
2
AB
,問(wèn)是否存在不平行AB的直線l與橢圓G交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線l與AB夾角正切值的范圍,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知焦點(diǎn)在x軸上的橢圓,長(zhǎng)軸長(zhǎng)為4,右焦點(diǎn)到右頂點(diǎn)的距離為1,則橢圓的標(biāo)準(zhǔn)方程為( 。
A.
x2
4
+y2=1
B.
x2
4
+
y2
3
=1
C.
x2
4
+
y2
2
=1
D.
x2
3
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程
x2
25-m
+
y2
16+m
=1
表示焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)m的取值范圍是( 。
A.(-16,25)B.(
9
2
,25)
C.(-16,
9
2
)
D.(
9
2
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓ax2+by2=1與直線x+y-1=0相交于A,B兩點(diǎn),C是AB的中點(diǎn),若|AB|=2
2
,OC
的斜率為
2
2
,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在焦點(diǎn)在x軸的橢圓過(guò)點(diǎn)P(3,0),且長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,則其標(biāo)準(zhǔn)方程為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知P點(diǎn)在以坐標(biāo)軸為對(duì)稱軸的橢圓上,點(diǎn)P到兩焦點(diǎn)的距離分別為
4
5
3
2
5
3
,過(guò)P作長(zhǎng)軸的垂線恰好過(guò)橢圓的右焦點(diǎn),求橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案