分析 (I)由題意,kAB=kCD=-$\frac{1}{2}$,直線CD的方程為y=-$\frac{1}{2}$x+m,即x+2y-2m=0,利用S=8,|AB|=$\sqrt{5}$,即可求直線CD的方程;
(II)若|BC|=$\sqrt{13}$,則|AD|=$\sqrt{13}$,可得$\left\{\begin{array}{l}{a+2b-8=0}\\{\sqrt{{a}^{2}+^{2}}=\sqrt{13}}\end{array}\right.$,即可求點D的橫坐標.
解答 解:(I)由題意,kAB=kCD=-$\frac{1}{2}$,
∴直線CD的方程為y=-$\frac{1}{2}$x+m,即x+2y-2m=0,
∵S=8,|AB|=$\sqrt{5}$,
∴$\frac{|2m|}{\sqrt{1+4}}$=$\frac{8}{\sqrt{5}}$,
∴m=±4,
由圖可知m>0,∴直線CD的方程為y=-$\frac{1}{2}$x+m,即x+2y-8=0;
(II)設(shè)D(a,b),若|BC|=$\sqrt{13}$,則|AD|=$\sqrt{13}$,
∴$\left\{\begin{array}{l}{a+2b-8=0}\\{\sqrt{{a}^{2}+^{2}}=\sqrt{13}}\end{array}\right.$,∴點D的橫坐標a=1.2或2.
點評 本題考查直線方程,考查距離公式的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | $\frac{4}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{10}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow$ | B. | $\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$ | C. | $\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow$ | D. | $\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com