求(x+2+(x2+)2+…+(xn+)2的值

答案:
解析:

解:Sn=(x2+x4+…+x2n)+(+…+)+

當(dāng)x=±1時(shí), Sn=n+n+2n=4n.

當(dāng)x≠±1時(shí),

Sn=+2n=


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)精英家教網(wǎng)(理)已知函數(shù)f(x)=
ln(2-x2)
|x+2|-2

(1)試判斷f(x)的奇偶性并給予證明;
(2)求證:f(x)在區(qū)間(0,1)單調(diào)遞減;
(3)如圖給出的是與函數(shù)f(x)相關(guān)的一個(gè)程序框圖,試構(gòu)造一個(gè)公差不為零的等差數(shù)列
{an},使得該程序能正常運(yùn)行且輸出的結(jié)果恰好為0.請說明你的理由.
(文)如圖,在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0;
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且
AB
AD
=0
,求D2+E2-4F的值;
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判
斷點(diǎn)O、G、H是否共線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ln(2-x2)|x+2|-2

(1)判斷f(x)的奇偶性并給予證明;
(2)求滿足f(x)≥0的實(shí)數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2cos
x
2
,tan(
x
2
+
π
4
)),
b
=(
2
sin(
x
2
+
π
4
),tan(
x
2
-
π
4
)),令f(x)=
a
b

(1)求當(dāng)x∈(
π
2
,
3
)時(shí)函數(shù)f(x)的值域;
(2)是否存在實(shí)數(shù)x∈[0,π],使f(x)+f′(x)=0(其中f′(x)是f(x)的導(dǎo)函數(shù))?若存在,則求出x的值;若不存在,則證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(
π
2
+
x
2
)sin
x
2
-
3
cos(π+
x
2
)cos
x
2

(1)求f (x)其函數(shù)的最小正周期;
(2)若-π<x0<0且f(x0)=0,求f(4x0)的值.

查看答案和解析>>

同步練習(xí)冊答案