函數(shù)f(x)=2 
1
x-3
的值域是(  )
分析:先求指數(shù)部分
1
x-3
的范圍,再根據(jù)指數(shù)函數(shù)y=2t的單調(diào)性求解此函數(shù)的值域即可.
解答:解:令t=
1
x-3
,則t≠0
因為y=2t是指數(shù)函數(shù),所以0<2t≠20=1,
即0<y且y≠1.
故選D.
點評:本題主要考查了利用指數(shù)函數(shù)的單調(diào)性及指數(shù)函數(shù)的特殊點的函數(shù)值求解函數(shù)的值域,屬于基礎(chǔ)試題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2012-2013學年河南省南陽市五校高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知向量=(cosωx,sin(π-ωx)),=(cosωx,sin(+ωx)),(ω>0),函數(shù)f(x)=2+1的最小正周期為2.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西省上饒市廣豐中學高三(上)第一次段考數(shù)學試卷(文科)(補習班)(解析版) 題型:解答題

已知向量=(cosωx,sin(π-ωx)),=(cosωx,sin(+ωx)),(ω>0),函數(shù)f(x)=2+1的最小正周期為2.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蚌埠一中高三(上)期中數(shù)學試卷(文科)(解析版) 題型:解答題

已知向量=(cosωx,sin(π-ωx)),=(cosωx,sin(+ωx)),(ω>0),函數(shù)f(x)=2+1的最小正周期為2.
(1)求ω的值;
(2)求函數(shù)f(x)在區(qū)間[0,]上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年福建省南平市邵武一中高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

已知向量=(cosx,sinx),=(-cosx,cosx)
(1)當x∈[,]時,求函數(shù)f(x)=2+1的最大值.
(2)設(shè)f(x)=2+1,將函數(shù)y=f(x)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年北京市朝陽區(qū)高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

已知向量=(cosx,sinx),=(-cosx,cosx),函數(shù)f(x)=2+1.
(Ⅰ)求函數(shù)f(x)的最小正周期;
(Ⅱ)當x∈[0,2π]時,求f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習冊答案