e|x|-sinx+1 | e|x|+1 |
sinx |
e|x|+1 |
sinx |
e|x|+1 |
sin(-x) |
e|x|+1 |
sinx |
e|x|+1 |
科目:高中數(shù)學 來源: 題型:
ln|x| |
|x| |
1 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:填空題
e|x|-sinx+1 |
e|x|+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)討論函數(shù)f(x)在R上的單調(diào)性;
(2)當-1<a<0時,求f(x)在[-2,1]上的最小值.
(文)已知f(x)=x3+mx2-2m2x-4(m為常數(shù),且m>0)有極大值.
(1)求m的值;
(2)求曲線y=f(x)的斜率為2的切線方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(1)求函數(shù)f(x)的單調(diào)區(qū)間和最小值;
(2)當b>0時,求證:bb≥(其中e=2.718 28…是自然對數(shù)的底數(shù));
(3)若a>0,b>0,證明f(a)+(a+b)ln2≥f(a+b)-f(b).
(文)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導函數(shù),F(x)=f(x)+af′(x)(a>0),且F(x)是R上的奇函數(shù).
(1)求和c的值.
(2)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示).
(3)當a=2時,設(shè)0<t<4且t≠2,曲線y=f(x)在點A(t,f(t))處的切線與曲線y=f(x)相交于點B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點C,△ABC的面積為S,試用t表示△ABC的面積S(t),并求S(t)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com