B
分析:推導兩個條件之間的關(guān)系問題,要從兩個方面入手,觀察從甲能否推出乙,若能則甲是乙的充分條件,再觀察乙能否推出甲,若能則甲是乙的必要條件,兩個方面缺一不可.
解答:(1)∵sin(2α+β)=sin[(α+β)+α]=sin(α+β)cosα+cos(α+β)sinα
=3sinαcos(α+β),
∴sin(α+β)cosα=2sinαcos(α+β),
兩邊都除以cos(α+β)cosα,得sin(α+β)/cos(α+β)=2sinα/cosα,即tan(α+β)=2tanα.
但同除時要除式不為零,
∴由甲不一定推出乙.
(2)∵tan(α+β)=2tanα,即sin(α+β)/cos(α+β)=2sinα/cosα,
兩邊都乘以cos(α+β)cosα,得sin(α+β)cosα=2sinαcos(α+β),
兩邊都加上cos(α+β)sinα,得
sin(α+β)cosα+cos(α+β)sinα=3sinαcos(α+β),
即sin(2α+β)=3sinαcos(α+β).
∴由乙可推出甲.
甲是乙的必要條件.
故選B
點評:運用兩角和與差角三角函數(shù)公式的關(guān)鍵是熟記公式,我們不僅要記住公式,更重要的是抓住公式的特征,如角的關(guān)系,次數(shù)關(guān)系,三角函數(shù)名等.抓住公式的結(jié)構(gòu)特征對提高記憶公式的效率起到至關(guān)重要的作用.