已知多面體中,平面,平面,,,為的中點.
(1)求證:;
(2)求直線與平面所成角的余弦值的大小.
(1)詳見解析;(2)直線與平面所成角的余弦值為.
解析試題分析:(1)取的中點,連接、,證明平面,進而得到;(2)法一是利用四邊形為平行四邊形得到,于是得到點和點到平面的距離相等,證明平面,由于點為的中點,由中位線原理得到點到平面的距離為線段長度的一半,于是計算出點到平面的距離,根據(jù)直線與平面所成角的原理計算出直線與平面所成角的正弦值,進一步求出該角的余弦值;法二是分別以、、為、、軸建立空間直角坐標系,利用空間向量法求出直線與平面所成角的正弦值,再根據(jù)同角三角函數(shù)的平方關系求出這個角的余弦值.
試題解析:(1)如下圖所示,取的中點,連接、、,
、分別為、的中點,則,
由于平面,平面,,
又,,,,所以,平面,
平面,,
,且點為的中點,所以,
,平面,
平面,;
(2)法一:由(1)知,故四邊形為平行四邊形,
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P—ABCD中,ABCD為平行四邊形,且BC⊥平面PAB,PA⊥AB,M為PB的中點,PA=AD=2.
(Ⅰ)求證:PD//平面AMC;
(Ⅱ)若AB=1,求二面角B—AC—M的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知四棱錐,底面是平行四邊形,點在平面上的射影在邊上,且,.
(Ⅰ)設是的中點,求異面直線與所成角的余弦值;
(Ⅱ)設點在棱上,且.求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900.
(1)求證:PC⊥BC;
(2)求點A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,四棱錐的底面是正方形,,點在棱上.
(1)求證:平面平面;
(2)當,且時,確定點的位置,即求出的值.
(3)在(2)的條件下若F是PD的靠近P的一個三等分點,求二面角A-EF-D的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com