設(shè)F1、F2分別為橢圓+=1的左、右焦點(diǎn),c=,若直線x=上存在點(diǎn)P,使線段PF1的中垂線過(guò)點(diǎn)F2,則橢圓離心率的取值范圍是( )
A.(0,]
B.(0,]
C.[,1)
D.[,1)
【答案】分析:根據(jù)題意,設(shè)P的坐標(biāo)為(,y),進(jìn)而可得PF1的中點(diǎn)Q的坐標(biāo),結(jié)合題意,線段PF1的中垂線過(guò)點(diǎn)F2,可得y與b、c的關(guān)系,又由y2的范圍,計(jì)算可得答案.
解答:解:由已知P(,y),所以PF1的中點(diǎn)Q的坐標(biāo)為(,y  ),
=
由題意可得,
整理可得,=>0

當(dāng)=0時(shí),不存在,
此時(shí)F2為中點(diǎn),
a2 c-c=2c⇒e=3  3.
綜上得 ≤e<1.
故選D.
點(diǎn)評(píng):本題考查橢圓的性質(zhì)的應(yīng)用,要牢記橢圓的有關(guān)參數(shù),如a、b、c之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1,F(xiàn)2分別為橢C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右兩個(gè)焦點(diǎn),橢圓C上的點(diǎn)A(1,
3
2
)
到兩點(diǎn)的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn)Q(0.
1
2
)
求|PQ|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)F1,F(xiàn)2分別為橢C:數(shù)學(xué)公式(a>b>0)的左、右兩個(gè)焦點(diǎn),橢圓C上的點(diǎn)數(shù)學(xué)公式到兩點(diǎn)的距離之和等于4.
(Ⅰ)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(Ⅱ)設(shè)點(diǎn)P是(Ⅰ)中所得橢圓上的動(dòng)點(diǎn)數(shù)學(xué)公式求|PQ|的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案