設拋物線C:y=x2,F(xiàn)為焦點,l為準線,準線與y軸交點為H
(1)求|FH|;
(2)過點H的直線與拋物線C交于A,B兩點,直線AF與拋物線交于點D.
①設A,B,D三點的橫坐標分別為x1,x2,x3,計算:x1•x2及x1•x3的值;
②若直線BF與拋物線交于點E,求證:D,E,H三點共線.
分析:(1)利用拋物線方程及定義,可得結論;
(2)①設出直線方程與拋物線方程聯(lián)立,利用韋達定理,可得結論;
②證明kDE=kEH,即可得到D,E,H三點共線.
解答:解:(1)∵拋物線C:y=x2,F(xiàn)為焦點,l為準線,準線與y軸交點為H
∴|FH|=
1
2
;
(2)①設直線AB方程:y=kx-
1
4
,直線AD方程:y=kx+
1
4

y=x2
y=kx-
1
4
,可得x2-kx+
1
4
=0,∴x1•x2=
1
4

y=x2
y=kx+
1
4
,可得x2-kx-
1
4
=0,∴x1•x3=-
1
4

②設D(-
1
4x1
1
16x12
),E(-
1
4x2
,
1
16x22
),則kDE=
1
16x22
-
1
16x12
-
1
4x2
+
1
4x1
=-
1
4x2
-
1
4x1
,
kEH=
-
1
4
-
1
16x22
1
4x2
=-
1
4x2
-x2
=-
1
4x2
-
1
4x1

∴kDE=kEH
∴D,E,H三點共線.
點評:本題考查拋物線的定義與性質,考查直線與拋物線的位置關系,考查韋達定理的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設拋物線C:y=x2-2m2x-(2m2+1)(m∈R),
(1)求證:拋物線C恒過x軸上一定點M;
(2)若拋物線與x軸的正半軸交于點N,與y軸交于點P,求證:PN的斜率為定值;
(3)當m為何值時,△PMN的面積最小?并求此最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.則△APB的重心G的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.
(1)求△APB的重心G的軌跡方程.
(2)證明∠PFA=∠PFB.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高三數(shù)學精品復習17:拋物線及其性質(解析版) 題型:解答題

如圖,設拋物線C:y=x2的焦點為F,動點P在直線l:x-y-2=0上運動,過P作拋物線C的兩條切線PA、PB,且與拋物線C分別相切于A、B兩點.則△APB的重心G的軌跡方程為    

查看答案和解析>>

同步練習冊答案