若函數(shù)f(x)滿足f(-x)=-f(x),又在(0,+∞)上單調(diào)遞增,且f(3)=0.則不等式x•f(x)<0的解集為
(-3,0)∪(0,3)
(-3,0)∪(0,3)
分析:先根據(jù)函數(shù)的性質(zhì)作出f(x)的草圖,借助圖象可解不等式.
解答:解:由f(-x)=-f(x)知f(x)為奇函數(shù),且f(-3)=-f(3)=0,
由f(x)在(0,+∞)上單調(diào)遞增,知f(x)在(-∞,0)上也單調(diào)遞增,
作出f(x)的草圖,如圖所示:
由圖象得,xf(x)<0?
x>0
f(x)<0
x<0
f(x)>0
?0<x<3或-3<x<0,
∴不等式x•f(x)<0的解集為(-3,0)∪(0,3),
故答案為:(-3,0)∪(0,3).
點(diǎn)評:本題考查函數(shù)的奇偶性、單調(diào)性及其應(yīng)用,考查抽象不等式的求解,考查數(shù)形結(jié)合思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (理科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省洛陽一中高三(上)期中數(shù)學(xué)考前選擇題強(qiáng)化訓(xùn)練(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)量檢測數(shù)學(xué)試卷 (文科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖南省湘西州邊城高級中學(xué)高三(上)月考數(shù)學(xué)試卷(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省湘西州古丈縣補(bǔ)習(xí)學(xué)校高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知定義域?yàn)镽的函數(shù)f(x)滿足f(-x)=-f(x+4),則x>2時,f(x)單調(diào)遞增,若x1+x2<4,且(x1-2)(x2-2)<0,則f(x1)+f(x2)與0的大小關(guān)系是( )
A.f(x1)+f(x2)>0
B.f(x1)+f(x2)=0
C.f(x1)+f(x2)<0
D.f(x1)+f(x2)≤0

查看答案和解析>>

同步練習(xí)冊答案