已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上。
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點P,且斜率為-的直線與曲線M相交于A、B兩點。問△ABC能否為正三角形?若能,求出C點的坐標;若不能,說明理由。
解:(1)依題意,曲線M是以點P為焦點,直線l為準線的拋物線,所以曲線M的方程為y2=4x,如圖所示。
(2)由題意得,直線AB的方程為
消y得:3x2-10x+3=0
解得
若△ABC能為正三角形
設(shè)C(-1,y),則|AC|=|AB|=|BC|,即

①②組成的方程組無解,因此直線l上不存在點C使△ABC是正三角形。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(Ⅰ)求動圓圓心的軌跡M的方程;
(Ⅱ)設(shè)過點P,且斜率為-
3
的直線與曲線M相交于A,B兩點.
(i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;
(ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點P且斜率為-
3
的直線與曲線M相交于A、B兩點,求線段AB的長;
(3)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•寶山區(qū)一模)已知動圓過定點P(1,0),且與定直線l:x=-1相切.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點P,且傾斜角為120°的直線與曲線M相交于A,B兩點,A,B在直線l上的射影是A1,B1
①求梯形AA1B1B的面積;
②若點C是線段A1B1上的動點,當△ABC為直角三角形時,求點C的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(1)求動圓圓心的軌跡M的方程;
(2)設(shè)過點P,且斜率為-
3
的直線與曲線M相交于A、B兩點.問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2009年高考數(shù)學壓軸試卷集錦(1)(解析版) 題型:解答題

已知動圓過定點P(1,0),且與定直線l:x=-1相切,點C在l上.
(Ⅰ)求動圓圓心的軌跡M的方程;
(Ⅱ)設(shè)過點P,且斜率為-的直線與曲線M相交于A,B兩點.
(i)問:△ABC能否為正三角形?若能,求點C的坐標;若不能,說明理由;
(ii)當△ABC為鈍角三角形時,求這種點C的縱坐標的取值范圍.

查看答案和解析>>

同步練習冊答案