【題目】如圖,在多面體中,和交于一點(diǎn),除以外的其余各棱長(zhǎng)均為2.
作平面與平面的交線,并寫出作法及理由;
求證:平面平面;
若多面體的體積為2,求直線與平面所成角的正弦值.
【答案】見解析見解析
【解析】
由題意可得平面,由線面平行的性質(zhì)作出交線即可.
取的中點(diǎn),連結(jié),.由條件可證得平面,故.
又.平面.從而平面平面.
利用等體積法求得三棱錐的高,通過(guò)建立空間坐標(biāo)系,利用空間向量法求線面角.
過(guò)點(diǎn)作(或)的平行線,即為所求直線.
和交于一點(diǎn),四點(diǎn)共面.又四邊形邊長(zhǎng)均相等.
四邊形為菱形,從而.
又平面,且平面,平面.
平面,且平面平面,.
取的中點(diǎn),連結(jié),.,,,.
又,平面,平面,故.
又四邊形為菱形,.
又,平面.
又平面,平面平面.
由,即.
設(shè)三棱錐的高為,則,解得.
又,平面.
建立如圖的空間直角坐標(biāo)系,則,,,.
,.
由得,平面的一個(gè)法向量為.
又,于是.
故直線與平面所成角的正弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的兩條漸近線分別為直線,,經(jīng)過(guò)右焦點(diǎn)且垂直于的直線分別交,于兩點(diǎn),若,,成等差數(shù)列,且,則該雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校初中部共120名教師,高中部共180名教師,其性別比例如圖所示,已知按分層抽樣方法得到的工會(huì)代表中,高中部女教師有6人,則工會(huì)代表中男教師的總?cè)藬?shù)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】命題方程表示焦點(diǎn)在軸上的雙曲線;命題若存在,使得成立.
(1)如果命題是真命題,求實(shí)數(shù)的取值范圍;
(2)如果“”為假命題,“”為真命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知復(fù)平面內(nèi)平行四邊形ABCD(A,B,C,D按逆時(shí)針排列),A點(diǎn)對(duì)應(yīng)的復(fù)數(shù)為2+i,向量對(duì)應(yīng)的復(fù)數(shù)為1+2i,向量對(duì)應(yīng)的復(fù)數(shù)為3-i.
(1)求點(diǎn)C,D對(duì)應(yīng)的復(fù)數(shù).
(2)求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是規(guī)劃的生態(tài)文旅園區(qū),其中、分別在射線和上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為千米.根據(jù)發(fā)展規(guī)劃,要在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn)(不與重合).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長(zhǎng)度表示為的函數(shù);
(2)已知公路每千米的造價(jià)為萬(wàn)元,問(wèn)建造這樣一條公路,至少要投入多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)加工生產(chǎn)一批珠寶,要求每件珠寶都按統(tǒng)一規(guī)格加工,每件珠寶的原材料成本為3.5萬(wàn)元,每件珠寶售價(jià)(萬(wàn)元)與加工時(shí)間(單位:天)之間的關(guān)系滿足圖1,珠寶的預(yù)計(jì)銷量(件)與加工時(shí)間(天)之間的關(guān)系滿足圖2.原則上,單件珠寶的加工時(shí)間不能超過(guò)55天,企業(yè)支付的工人報(bào)酬為這批珠寶銷售毛利潤(rùn)的三分之一,其他成本忽略不計(jì)算.
(1)如果每件珠寶加工天數(shù)分別為6,12,預(yù)計(jì)銷量分別會(huì)有多少件?
(2)設(shè)工廠生產(chǎn)這批珠寶產(chǎn)生的純利潤(rùn)為(萬(wàn)元),請(qǐng)寫出純利潤(rùn)(萬(wàn)元)關(guān)于加工時(shí)間(天)之間的函數(shù)關(guān)系式,并求純利潤(rùn)(萬(wàn)元)最大時(shí)的預(yù)計(jì)銷量.
注:毛利潤(rùn)=總銷售額-原材料成本,純利潤(rùn)=毛利潤(rùn)-工人報(bào)酬
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著人們經(jīng)濟(jì)收入的不斷增加,個(gè)人購(gòu)買家庭轎車已不再是一種時(shí)尚.車的使用費(fèi)用,尤其是隨著使用年限的增多,所支出的費(fèi)用到底會(huì)增長(zhǎng)多少,一直是購(gòu)車一族非常關(guān)心的問(wèn)題.某汽車銷售公司做了一次抽樣調(diào)查,并統(tǒng)計(jì)得出某款車的使用年限x與所支出的總費(fèi)用y(萬(wàn)元)有如表的數(shù)據(jù)資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
總費(fèi)用y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
(1)求線性回歸方程;
(2)估計(jì)使用年限為12年時(shí),使用該款車的總費(fèi)用是多少萬(wàn)元?
線性回歸方程中斜率和截距用最小二乘法估計(jì)計(jì)算公式如下:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若存在實(shí)數(shù)t,使得任給,不等式恒成立,則m的最大值為( )
A.3B.6C.8D.9
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com