設(shè)矩陣A=,求矩陣A的特征向量.
【答案】分析:先根據(jù)特征值的定義列出特征多項式,令f(λ)=0解方程可得特征值,再由特征值列出方程組即可解得相應(yīng)的特征向量.
解答:解:特征多項式f(λ)=2-1,
由λ2-1=0得,λ=±1,
當(dāng)λ1=1時,
可取為屬于特征值λ1=1的一個特征向量
同理,屬于特征值λ2=-1的一個特征向量是:
點評:本題主要考查來了矩陣特征值與特征向量的計算等基礎(chǔ)知識,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年福建省三明市高三質(zhì)量檢查數(shù)學(xué)試卷(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
設(shè)矩陣
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(α為參數(shù)),點Q極坐標(biāo)為
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年福建省三明市普通高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
設(shè)矩陣
(I)若a=2,b=3,求矩陣M的逆矩陣M-1;
(II)若曲線C:x2+4xy+2y2=1在矩陣M的作用下變換成曲線C':x2-2y2=1,求a+b的值.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(α為參數(shù)),點Q極坐標(biāo)為
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
設(shè)函數(shù)f(x)=|x+1|+|x-2|.
(Ⅰ)求y=f(x)的最小值;
(Ⅱ)若關(guān)于x的不等式f(x)≥4的解集為A,求集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)預(yù)測系列試卷:解答題3(解析版) 題型:解答題

設(shè)矩陣A=,求矩陣A的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江蘇期末題 題型:解答題

(附加題)
設(shè)矩陣A=,若矩陣A的屬于特征值1的一個特征向量為,屬于特征值2的一個特征向量為,求實數(shù)m,n的值.

查看答案和解析>>

同步練習(xí)冊答案