【題目】將一塊邊長為6cm的正方形紙片,先按如圖1所示的陰影部分截去四個(gè)全等的等腰三角形,然后將剩余部分沿虛線折疊并拼成一個(gè)正四棱錐模型(底面是正方形,從頂點(diǎn)向底面作垂線,垂足是底面中心的四棱錐),將該四棱錐如圖2放置,若其正視圖為正三角形,則其體積為cm3

【答案】
【解析】解:
∵正四棱錐的正視圖是正三角形,正視圖的底面邊長為a,高為 a,
∴正四棱錐的斜高為a,
∵圖1得出:∵將一張邊長為6cm的紙片按如圖1所示的陰影部分截去四個(gè)全等的等腰三角形
×6=a+ ,a=2
∴正四棱錐的體積是 a2× a= cm3
故答案為
根據(jù)圖形正四棱錐的正視圖是正三角形,正視圖的底面邊長為a,高為 a,正四棱錐的斜高為a,運(yùn)用圖1得出 ×6=a+ ,a=2 ,計(jì)算出a,代入公式即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn);
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn , 且 是1與an的等差中項(xiàng).
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{ }的前n項(xiàng)和,證明: <Tn<1(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]

已知曲線C1的極坐標(biāo)方程為ρ2cos2θ=8,曲線C2的極坐標(biāo)方程為 ,曲線C1、C2相交于A、B兩點(diǎn).
(Ⅰ)求A、B兩點(diǎn)的極坐標(biāo);
(Ⅱ)曲線C1與直線 (t為參數(shù))分別相交于M,N兩點(diǎn),求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府在該地一水庫上建造一座水電站,用泄流水量發(fā)電,如圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知X∈[0,120],歷年中日泄流量在區(qū)間[30,60)的年平均天數(shù)為156天,一年按364天計(jì).
(1)請把頻率直方圖補(bǔ)充完整;
(2)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬立方米的日泄流量才能夠運(yùn)行一臺(tái)發(fā)電機(jī),如60≤X<90時(shí)才夠運(yùn)行兩臺(tái)發(fā)電機(jī),若運(yùn)行一臺(tái)發(fā)電機(jī),每天可獲利潤4000元,若不運(yùn)行,則該臺(tái)發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤的期望值為決策依據(jù).問:為使水電站日利潤的期望值最大,該水電站應(yīng)安裝多少臺(tái)發(fā)電機(jī)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓E: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2
(Ⅰ)若橢圓E的長軸長、短軸長、焦距成等差數(shù)列,求橢圓E的離心率;
(Ⅱ)若橢圓E過點(diǎn)A(0,﹣2),直線AF1 , AF2與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B,C,且△ABC的面積為 ,求橢圓E的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一般情況下,城市主干道上的車流速度 (單位:千米/小時(shí))是車流密度 (單位:輛/千米)的函數(shù)。當(dāng)主干道上的車流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過20輛/千米時(shí),車流速度為60千米/小時(shí)。研究表明:當(dāng) 時(shí),車流速度 是車流密度 的一次函數(shù)。
(1)當(dāng) 時(shí),求函數(shù) 的表達(dá)式;
(2)當(dāng)車流密度為多大時(shí),車流量(單位時(shí)間內(nèi)通過主干道上某觀測點(diǎn)的車輛數(shù),單位:輛/小時(shí)) 可以達(dá)到最大?并求出最大值。(精確到1輛/小時(shí))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中為了推進(jìn)新課程改革,滿足不同層次學(xué)生的需求,決定從高一年級(jí)開始,在每周的周一、周三、周五的課外活動(dòng)期間同時(shí)開設(shè)數(shù)學(xué)、物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在期間的任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座.(規(guī)定:各科達(dá)到預(yù)先設(shè)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座)統(tǒng)計(jì)數(shù)據(jù)表明,各學(xué)科講座各天的滿座的概率如下表:

信息技術(shù)

生物

化學(xué)

物理

數(shù)學(xué)

周一

周三

周五

根據(jù)上表:
(1)求數(shù)學(xué)輔導(dǎo)講座在周一、周三、周五都不滿座的概率;
(2)設(shè)周三各輔導(dǎo)講座滿座的科目數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用對(duì)人民群眾的建康帶來一定的危害,為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社會(huì)每年投入200萬元,搭建了甲、乙兩個(gè)無公害蔬菜大棚,每個(gè)大棚至少要投入20萬元,其中甲大棚種西紅柿,乙大棚種黃瓜,根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入P、種黃瓜的年收入Q與投入a(單位:萬元)滿足P=80+4 ,Q= a+120,設(shè)甲大棚的投入為x(單位:萬元),每年兩個(gè)大棚的總收益為f(x)(單位:萬元).
(1)求f(50)的值;
(2)試問如何安排甲、乙兩個(gè)大棚的投入,才能使總收益f(x)最大?

查看答案和解析>>

同步練習(xí)冊答案