【題目】如圖,一輛汽車(chē)在一條水平的公路上向正西行駛,到A處時(shí)測(cè)得公路北側(cè)遠(yuǎn)處一山頂D在西偏北的方向上,仰角為,行駛4km后到達(dá)B處,測(cè)得此山頂在西偏北的方向上.
(1)求此山的高度(單位:km);
(2)設(shè)汽車(chē)行駛過(guò)程中仰望山頂D的最大仰角為,求.
【答案】(1)km.(2)
【解析】
(1) 設(shè)此山高,再根據(jù)三角形中三角函數(shù)的關(guān)系以及正弦定理求解即可.
(2) 由題意可知,當(dāng)點(diǎn)C到公路距離最小時(shí),仰望山頂D的仰角達(dá)到最大,再計(jì)算到直線(xiàn)的距離即可.
解:(1)設(shè)此山高,則,
在中,,,.
根據(jù)正弦定理得,
即,
解得(km).
(2)由題意可知,當(dāng)點(diǎn)C到公路距離最小時(shí),仰望山頂D的仰角達(dá)到最大,
所以過(guò)C作,垂足為E,連接DE.
則,,,
所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四面體ABCD中,O是BD的中點(diǎn),CA=CB=CD=BD=2,AB=AD=.
(1)求證:AO⊥平面BCD;
(2)求異面直線(xiàn)AB與CD所成角的大;
(3)求二面角O﹣AC﹣D的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一年級(jí)新入學(xué)360名學(xué)生,其中200名男生,160名女生.學(xué)校計(jì)劃為家遠(yuǎn)的高一新生提供5間男生宿舍和4間女生宿舍,每間宿舍可住2名學(xué)生.該校“數(shù)學(xué)與統(tǒng)計(jì)”社團(tuán)的學(xué)生為了解全體高一學(xué)生家庭居住地與學(xué)校的距離情況,按照性別進(jìn)行分層隨機(jī)抽樣,其中抽取的40名男生家庭居住地與學(xué)校的距離數(shù)據(jù)(單位:)如下:
5.0 | 6.0 | 7.0 | 7.5 | 8.0 | 8.4 | 4.0 | 3.5 | 4.5 |
4.3 | 5.0 | 4.0 | 3.0 | 2.5 | 4.0 | 1.6 | 6.0 | 6.5 |
5.5 | 5.7 | 3.1 | 5.2 | 4.4 | 5.0 | 6.4 | 3.5 | 7.0 |
4.0 | 3.0 | 3.4 | 6.9 | 4.8 | 5.6 | 5.0 | 5.6 | 6.5 |
3.0 | 6.0 | 7.0 | 6.6 |
(1)根據(jù)以上樣本數(shù)據(jù)推斷,若男生甲家庭居中地與學(xué)校距離為,他是否能住宿?說(shuō)明理由;
(2)通過(guò)計(jì)算得到男生樣本數(shù)據(jù)平均值為,女生樣本數(shù)據(jù)平均值為,求所有樣本數(shù)據(jù)的平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)若方程f(x)=m有4個(gè)不同的實(shí)根x1,x2,x3,x4,且x1<x2<x3<x4,則()(x3+x4)=( 。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在去年的足球甲聯(lián)賽上,一隊(duì)每場(chǎng)比賽平均失球數(shù)是1.5,全年比賽失球個(gè)數(shù)的標(biāo)準(zhǔn)差為1.1;二隊(duì)每場(chǎng)比賽平均失球數(shù)是2.1,全年失球個(gè)數(shù)的標(biāo)準(zhǔn)差是0.4,你認(rèn)為下列說(shuō)法中正確的個(gè)數(shù)有( )
①平均來(lái)說(shuō)一隊(duì)比二隊(duì)防守技術(shù)好;②二隊(duì)比一隊(duì)防守技術(shù)水平更穩(wěn)定;③一隊(duì)防守有時(shí)表現(xiàn)很差,有時(shí)表現(xiàn)又非常好;④二隊(duì)很少不失球.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,數(shù)列{bn}滿(mǎn)足b1=1,b2=2,且anbn+bn=nbn+1(bn≠0).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面上任意個(gè)點(diǎn)構(gòu)成的點(diǎn)集,如果其中任意兩點(diǎn)之間的距離均已確定,那么就稱(chēng)這個(gè)點(diǎn)集是“穩(wěn)定的”.求證:在格點(diǎn)的平面點(diǎn)集中,無(wú)三點(diǎn)共線(xiàn),且其中的個(gè)兩點(diǎn)之間的距離已被確定,那么點(diǎn)集就是“穩(wěn)定的”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知直線(xiàn)的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,且與直角坐標(biāo)系長(zhǎng)度單位相同的極坐標(biāo)系中,曲線(xiàn)的極坐標(biāo)方程是.
(1)求直線(xiàn)的普通方程與曲線(xiàn)的直角坐標(biāo)方程;
(2)設(shè)點(diǎn).若直與曲線(xiàn)相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線(xiàn)l的極坐標(biāo)方程是,曲線(xiàn)的極坐標(biāo)方程是.
(1)求直線(xiàn)l和曲線(xiàn)的直角坐標(biāo)方程,曲線(xiàn)的普通方程;
(2)若直線(xiàn)l與曲線(xiàn)和曲線(xiàn)在第一象限的交點(diǎn)分別為P,Q,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com