設(shè)橢圓的離心率,右焦點,方程的兩個根分別為,則點

A.圓內(nèi)           B.圓

C.圓上            D.以上三種情況都有可能

 

【答案】

A

【解析】

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=

左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年寧夏石嘴山市平羅中學(xué)高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案