已知函數(shù)f(x)=x|x-a|-lnx,a∈R.
(Ⅰ)若a=1,求函數(shù)f(x)在區(qū)間[1,e]上的最大值;
(Ⅱ)若f(x)>0恒成立,求a的取值范圍.
(1) f(x)=f(e)=e-e-1.
(2) 滿足條件的a的取值范圍是(-,1)
【解析】
試題分析:
考點:解:(Ⅰ)若a=1 ,則f(x)=x|x-1|-lnx.
當x∈[1,e]時,f(x)=x-x-lnx,f′(x)=2x-1-=>0,
所以f(x)在[1,e]上單調遞增,∴f(x)=f(e)=e-e-1. 4分
(Ⅱ)函數(shù)f(x)的定義域為(0,+). 由f(x)>0,得|x-a|>. *
(i)當x∈(0,1)時,|x-a|≥0, <0,不等式*恒成立,
所以a∈R; 5分
(ii)當x=1時,|1-a|≥0,=0,所以a1; 6分
(iii)當x>1時,不等式*恒成立等價于a<x-恒成立或a>x+恒成立.
令h(x)=x-,則h′(x)=.
因為x>1,所以h′(x)>0,從而h(x)>1.
因為a<x-恒成立等價于a<(h(x)),所以a≤1.
令g(x)=x+,則g′(x)=.再令e(x)=x+1-lnx,則e′(x)=2x->0在x∈(1,+)上恒成立,e(x)在x∈(1,+)上無最大值. 11分
綜上所述,滿足條件的a的取值范圍是(-,1). 12分
考點:導數(shù)的運用
點評:主要是考查了導數(shù)在研究函數(shù)中的運用,運用導數(shù)判定函數(shù)單調性以及函數(shù)的最值,屬于基礎題。
科目:高中數(shù)學 來源: 題型:
π |
2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
3 |
f′(x) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:上海模擬 題型:解答題
x |
a |
b |
x |
4c2 |
k(k+c) |
查看答案和解析>>
科目:高中數(shù)學 來源:深圳一模 題型:解答題
1 |
3 |
f′(x) |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com