(2012•上海)已知函數(shù)f(x)=e|x-a|(a為常數(shù)).若f(x)在區(qū)間[1,+∞)上是增函數(shù),則a的取值范圍是
(-∞,1]
(-∞,1]
分析:由題意,復合函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)可得出內(nèi)層函數(shù)t=|x-a|在區(qū)間[1,+∞)上是增函數(shù),又絕對值函數(shù)t=|x-a|在區(qū)間[a,+∞)上是增函數(shù),可得出[1,+∞)⊆[a,+∞),比較區(qū)間端點即可得出a的取值范圍
解答:解:因為函數(shù)f(x)=e|x-a|(a為常數(shù)).若f(x)在區(qū)間[1,+∞)上是增函數(shù)
由復合函數(shù)的單調(diào)性知,必有t=|x-a|在區(qū)間[1,+∞)上是增函數(shù)
又t=|x-a|在區(qū)間[a,+∞)上是增函數(shù)
所以[1,+∞)⊆[a,+∞),故有a≤1
故答案為(-∞,1]
點評:本題考查指數(shù)函數(shù)單調(diào)性的運用及復合函數(shù)單調(diào)性的判斷,集合包含關系的判斷,解題的關鍵是根據(jù)指數(shù)函數(shù)的單調(diào)性將問題轉(zhuǎn)化為集合之間的包含關系,本題考查了轉(zhuǎn)化的思想及推理判斷的能力,屬于指數(shù)函數(shù)中綜合性較強的題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知y=f(x)是奇函數(shù),若g(x)=f(x)+2且g(1)=1,則g(-1)=
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知橢圓C1
x2
12
+
y2
4
=1,C2
x2
16
+
y2
8
=1
,則(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知等差數(shù)列{an}的首項及公差均為正數(shù),令bn=
an
+
a2012-n
(n∈N*,n<2012)
.當bk是數(shù)列{bn}的最大項時,k=
1006
1006

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知函數(shù)y=f(x)的圖象是折線段ABC,其中A(0,0)、B(
1
2
,1)
、C(1,0),函數(shù)y=xf(x)(0≤x≤1)的圖象與x軸圍成的圖形的面積為
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•上海)已知雙曲線C1x2-
y2
4
=1

(1)求與雙曲線C1有相同焦點,且過點P(4,
3
)的雙曲線C2的標準方程;
(2)直線l:y=x+m分別交雙曲線C1的兩條漸近線于A、B兩點.當
OA
OB
=3
時,求實數(shù)m的值.

查看答案和解析>>

同步練習冊答案