正方體ABCD-A′B′C′D′中,異面直線AB′和A′D所成角為( 。
A、45°B、60°
C、90°D、60°或120°
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:畫(huà)出圖形,連接AC,B'C,因?yàn)閹缀误w為正方體,所以A'D∥B'C,所以異面直線AB′和A′D所成角為∠AB'C,利用△AB'C是等邊三角形求大。
解答: 解:如圖

連接AC,B'C,因?yàn)閹缀误w為正方體,所以A'D∥B'C,所以異面直線AB′和A′D所成角為∠AB'C,
又AC=AB'=B'C,
所以∠AB'C=60°;
故選B.
點(diǎn)評(píng):本題考查了異面直線所成的角的求法,這里充分利用正方體的性質(zhì),將異面直線所成的角轉(zhuǎn)化為等邊三角形的內(nèi)角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P(an,an+1)(n∈N*)(n∈N*)是函數(shù)y=
1
4
x2在點(diǎn)(1,
1
4
)處的切線上的點(diǎn),且a1=
1
2

(1)證明:{an+
1
2
}是等比數(shù)列;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):sin(kπ+
2
3
π)cos(kπ-
π
6
)(k∈Z).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=(
1
2
)
lgcosx
的單調(diào)遞減區(qū)間是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-2x-3
(1)求函數(shù)的對(duì)稱軸,頂點(diǎn)坐標(biāo)和函數(shù)的單調(diào)區(qū)間;
(2)做出函數(shù)的圖象;
(3)求函數(shù)的自變量在什么范圍內(nèi)取值時(shí),函數(shù)值大于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l:y=kx+1與雙曲線C:3x2-y2=3的右支交于不同的兩點(diǎn)A、B.
(Ⅰ)求實(shí)數(shù)k的取值范圍;
(Ⅱ)是否存在實(shí)數(shù)k,使得以線段AB為直徑的圓經(jīng)過(guò)雙曲線C的右焦點(diǎn)F?若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=
b
a
x+3與雙曲線
x2
a2
-
y2
b2
=1的交點(diǎn)個(gè)數(shù)是( 。
A、1B、2C、1或2D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,空間四邊形被一平面所截,截面EFGH是平行四邊形.求證:
(1)EF∥平面BCD;
(2)BC∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理做)函數(shù)f(x)=
3sinx,x∈[0,π]
-sinx,x∈(π,2π]
,若函數(shù)f(x)的圖象與直線y=k至少有一個(gè)交點(diǎn),則k的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案