已知橢圓左右兩焦點(diǎn)為F1,F(xiàn)2,P是橢圓上一點(diǎn),且在x軸上方,PF2⊥F1F2,OH⊥PF1于H,.
(1)求橢圓的離心率e的取值范圍;
(2)當(dāng)e取最大值時(shí),過F1,F(xiàn)2,P的圓Q的截y軸的線段長(zhǎng)為6,求圓Q的方程;
(3)在(2)的條件下,過橢圓右準(zhǔn)線L上任一點(diǎn)A引圓Q的兩條切線,切點(diǎn)分別為M,N,試探究直線MN是否過定點(diǎn)?若過定點(diǎn),請(qǐng)求出該定點(diǎn);否則,請(qǐng)說明理由.
考點(diǎn):
圓與圓錐曲線的綜合.
專題:
綜合題.
分析:
由相似三角形知,,,2a2λ﹣b2λ=b2,2a2λ=b2(1+λ),.
(1)由,知,在上單調(diào)遞減.由此能求出橢圓的離心率e的取值范圍.
(2)當(dāng)時(shí),,所以,2b2=a2.由PF2⊥F1F2,知PF1是圓的直徑,圓心是PF1的中點(diǎn),由此能求出圓Q的方程.
(3)橢圓方程是,右準(zhǔn)線方程為,由直線AM,AN是圓Q的兩條切線,知切點(diǎn)M,N在以AQ為直徑的圓上.設(shè)A點(diǎn)坐標(biāo)為,由此能夠?qū)С鲋本MN必過定點(diǎn).
解答:
解:由相似三角形知,,,
∴2a2λ﹣b2λ=b2,2a2λ=b2(1+λ),.
(1),∴,在上單調(diào)遞減.
∴時(shí),e2最小,時(shí),e2最大,
∴,∴.
(2)當(dāng)時(shí),,∴,∴2b2=a2.
∵PF2⊥F1F2,∴PF1是圓的直徑,圓心是PF1的中點(diǎn),
∴在y軸上截得的弦長(zhǎng)就是直徑,∴PF1=6.
又,∴.
∴,圓心Q(0,1),半徑為3,x2+(y﹣1)2=9.
(3)橢圓方程是,右準(zhǔn)線方程為,
∵直線AM,AN是圓Q的兩條切線,∴切點(diǎn)M,N在以AQ為直徑的圓上.設(shè)A點(diǎn)坐標(biāo)為,
∴該圓方程為.∴直線MN是兩圓的公共弦,兩圓方程相減得:,這就是直線MN的方程.
該直線化為:,
∴,∴
∴直線MN必過定點(diǎn).
點(diǎn)評(píng):
本題考查直線 和圓錐曲線的位置關(guān)系的綜合運(yùn)用,解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省宜昌市長(zhǎng)陽一中高二(下)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江蘇省高考數(shù)學(xué)預(yù)測(cè)試卷(3)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江蘇高考數(shù)學(xué)預(yù)測(cè)試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com