18.在△ABC中,a,b,c分別是角A,B,C的對邊.
(1)已知(a2+b2)sin(A-B)=(a2-b2)sin(A+B),試判斷該三角形的形狀;
(2)已知b2sin2C+c2sin2B=2bccosBcosC,試判斷該三角形的性狀;
(3)已知b=$\sqrt{13}$,且$\frac{cosB}{cosC}$=-$\frac{2a+c}$,求△ABC的面積的最大值;
(4)已知△ABC為銳角三角形,$\sqrt{3}$tanAtanB-tanA-tanB=$\sqrt{3}$,且c=2.求a2+b2的取值范圍.

分析 (1)利用兩角和公式對等式進行化簡整理,求得$\frac{sinAcosB}{cosAsinB}$=$\frac{{a}^{2}}{^{2}}$,利用正弦定理轉化成角的正弦,進而約分求得sin2A=sin2B,進而確定A,B的關系,確定三角形的形狀.
(2)利用正弦定理把已知等式中的邊均化為角的三角函數(shù)式,再應用兩角和的余弦公式推證cos(B+C)=0,使問題得解:
(3)根據(jù)正弦定理,結合兩角和差的正弦公式和余弦公式進行化簡,利用三角形的面積公式以及余弦定理結合基本不等式進行求解即可;
(4)利用兩角和差的正切公式結合正弦定理以及兩角和差的正弦公式進行化簡是解決本題的關鍵.

解答 解:∵對于(1):(a2-b2)sin(A+B)=(a2+b2)sin(A-B).
∴(a2-b2)(sinAcosB+cosAsinB)=(a2+b2)(sinAcosB-cosAsinB).
整理求得a2cosAsinB=b2sinAcosB,
即:$\frac{sinAcosB}{cosAsinB}$=$\frac{{a}^{2}}{^{2}}$=$\frac{si{n}^{2}A}{si{n}^{2}B}$,
∴sinAcosA=sinBcosB,
∴sin2A=sin2B,
∴A=B或A+B=$\frac{π}{2}$
∴△ABC是等腰△或Rt△.
對于(2):由正弦定理,原式化為:
8k2sin2Bsin2C=8k2sinBsinCcosBcosC,
∵sinBsinC≠0,
∴sinBsinC=cosBcosC,
即cos(B+C)=0,
∴B+C=90°,A=90°,
故△ABC為直角三角形.
對于(3):由 $\frac{cosB}{cosC}$=-$\frac{2a+c}$得:$\frac{cosB}{cosC}$=-$\frac{sinB}{2sinA+sinC}$,
即2sinAcosB+cosBsinC+sinBcosC=0,
∴2sinAcosB+sin(B+C)=2sinAcosB+sinA=0,即sinA(2cosB+1)=0,
又0<A<π,∴sinA≠0,則cosB=-$\frac{1}{2}$,
∵b=$\sqrt{13}$,
∴由余弦定理b2=a2+c2-2accosB,
即13=a2+c2+ac≥3ac,即ac≤$\frac{13}{3}$,
∴S△ABC=$\frac{1}{2}$acsinB≤$\frac{1}{2}$×$\frac{13}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{13\sqrt{3}}{12}$(當且僅當ac時取等號),
則△ABC面積最大值為$\frac{13\sqrt{3}}{12}$.
對于(4):∵$\sqrt{3}$tanA•tanB-tanA-tanB=$\sqrt{3}$,
∴$\frac{tanA+tanB}{1-tanAtanB}$=-$\sqrt{3}$,即tan(A+B)=-tanC=-$\sqrt{3}$,
∴tanC=$\sqrt{3}$,
∵∠C為三角形的內角,
則∠C=$\frac{π}{3}$;
∵∠A與∠B為銳角,且∠A+∠B=π-∠C=$\frac{2π}{3}$,即∠B=$\frac{2π}{3}$-∠A,
∴$\frac{π}{6}$<∠A<$\frac{π}{2}$,
∴$\frac{π}{6}$<2∠A-$\frac{π}{6}$<$\frac{5π}{6}$,
∵c=2,sinC=$\frac{\sqrt{3}}{2}$,
∴由正弦定理$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{c}{sinC}$=$\frac{2}{\frac{\sqrt{3}}{2}}$得:a=$\frac{4\sqrt{3}}{3}$sinA,b=$\frac{4\sqrt{3}}{3}$sinB,
∴a2+b2=$\frac{16}{3}$(sinA+sinB)=$\frac{16}{3}$[sinA+sin($\frac{2π}{3}$-A)]=$\frac{16}{3}$+$\frac{8}{3}$sin(2A-$\frac{π}{6}$),
∵$\frac{π}{6}$<2∠A-$\frac{π}{6}$<$\frac{5π}{6}$,
∴$\frac{1}{2}$<sin(2A-$\frac{π}{6}$)≤1,即$\frac{20}{3}$<$\frac{16}{3}$+$\frac{8}{3}$sin(2A-$\frac{π}{6}$)≤8,
則a2+b2的范圍為($\frac{20}{3}$,8].

點評 此題考查解三角形的應用,利用兩角和與差的正弦函數(shù)公式,正弦定理,余弦定理,以及兩角和與差的正切函數(shù)公式,熟練掌握公式及定理是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

7.設函數(shù)f(x)=$\left\{\begin{array}{l}{asinx+2,x≥0}\\{{x}^{2}+2a,x<0}\end{array}\right.$(其中a∈R)的值域為S,若[1,+∞)⊆S,則a的取值范圍是(  )
A.(-∞,$\frac{1}{2}$)B.[1,$\frac{3}{2}$]∪($\frac{7}{4}$,2]C.(-∞,$\frac{1}{2}$)∪[1,2]D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知兩直線l1:xcosθ-y(2cos2θ-1)+6=0和l2:2xsinθ+$\sqrt{3}$y+3=0,當l1⊥l2時,θ=$\frac{1}{2}$kπ+$\frac{π}{6}$,k∈Z.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.定義在(-1,0)∪(0,+∞)上的函數(shù)f(x)及二次函數(shù)g(x)滿足:f(x)-2f($\frac{1}{x}$)=ln$\frac{1+x}{{x}^{2}}$,g(1)=g(-3)=3,且g(x)的最小值是-1.
(Ⅰ)求f(x)和g(x)的解析式;
(Ⅱ)若對于x1,x2∈[1,2],均有g(x1)+ax1≤$\frac{1}{2}$x22+2f(x2)+2ln2-$\frac{1}{2}$成立,求實數(shù)a的取值范圍;
(Ⅲ)設φ(x)=$\left\{\begin{array}{l}{f(x),(x>0)}\\{g(x),(x≤0)}\end{array}\right.$,討論方程φ[φ(x)]=-1的解的個數(shù)情況.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.在△ABC中,角A、B、C的對邊分別是a、b、c,其中b=c=2,若函數(shù)f(x)=$\frac{1}{4}{x^3}-\frac{3}{4}x$的極大值是cosA,則△ABC的面積等于( 。
A.1B.$\sqrt{3}$C.2D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.如圖用莖葉圖記錄了同班的甲、乙兩名學生4次數(shù)學考試成績,其中甲的一次成績模糊不清,用x標記.
(1)若甲、乙這4次的平均成績相同,確定甲、乙中誰的成績更穩(wěn)定,并說明理由;
(2)若甲這4次獲得的最高分正好是班上第一名(滿分100,且分數(shù)為整數(shù)),且班上這次數(shù)學的第二名是91分,求甲這4次成績的平均分高于乙這4次成績的平均分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ln(3-x)+$\frac{1}{\sqrt{x+2}}$的定義域為集合A,集合B={x|x<a}.
(1)求集合A;
(2)若A?B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設集合M={x|-3<x<2},N={x|1≤x≤3},則M∩N=(  )
A.{x|1≤x<2}B.{x|1≤x≤2}C.{x|2<x≤3}D.{x|2≤x≤3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.一個正三棱錐的四個頂點都在半徑為1的球面上,其中底面的三個頂點在該球的一個大圓上,則該正三棱錐的側面積是$\frac{3\sqrt{15}}{4}$.

查看答案和解析>>

同步練習冊答案